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Accurate and efficient pancreas segmentation is the basis for subsequent diagnosis and qualitative treat-
ment of pancreatic cancer. Segmenting the pancreas from abdominal CT images is a challenging task
because the morphology of the pancreas varies greatly among different individuals and may be affected
by problems such as the unbalanced category and blurred boundaries. This paper proposes a two-stage
Trans-Deformer network to solve these problems of pancreas segmentation. To be specific, we first use
2D Unet for coarse segmentation to generate candidate regions of the pancreas. In the fine segmentation
stage, we propose to integrate deformable convolution into Vision Transformer (VIT) for solving the
deformation problem of the pancreas. For the problem of blurred boundaries caused by low contrast in
the pancreas, a multi-input module based on wavelet decomposition is proposed to make our network
pay more attention to high-frequency texture information. In addition, we propose using the Scale
Inter-active Fusion (SIF) module to merge local features and global features. Our method was evaluated
on the public NIH dataset including 82 abdominal contrast-enhanced CT volumes and the public MSD
dataset including 281 abdominal contrast-enhanced CT volumes via fourfold cross-validation. We have
achieved the average Dice Similarity Coefficient (DSC) values of 89.89 ± 1.82 % on the NIH dataset, and
91.22 ± 1.37 % on the MSD dataset, outperforming other exiting state-of-the-art pancreas segmentation
methods.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

The pancreas is an important digestive organ of the human
body, responsible for regulating the physiological functions of the
whole body, and is susceptible to various diseases. Pancreatic can-
cer is a malignant tumor that has a high mortality rate [1] and a
low survival rate after treatment. In the United States alone in
2021, about 48,000 people die of pancreatic cancer, and about
60,000 new patients are diagnosed with pancreatic cancer [2].
Regardless of the stage of disease, the five-year survival rate of
patients is only about 10 % [2]. Fortunately, early diagnosis and
timely treatment can delay the development of pancreatic cancer
and even eliminate it [3]. Accurately segmenting the pancreas from
CT images is helpful for timely monitoring of abnormal volume
changes and abnormal growth of the pancreas, providing the pos-
sibility for the prevention, diagnosis and surgical treatment of pan-
creatic cancer. Because it is time-consuming and labor-intensive to
manually outline the boundary of the pancreas layer by layer, auto-
matically identifying and segmenting the pancreas using radiolog-
ical images has become a research hotspot. Furthermore,
automatic segmentation of the pancreas is an important prerequi-
site for medical image analysis and surgical diagnosis plans.

In recent years, with the rapid development of deep learning
research and neural networks, the automatic segmentation of
many organs and tissues has achieved good results, such as the
heart [4], liver [5], spleen [6], lung [7], left and right kidneys
[8,9] and so on. However, compared with other organs, the accu-
racy of pancreas segmentation is still relatively low. Automatic
segmentation of the pancreas remains a challenging task due to
the very limited volume of the pancreas in abdominal CT scans.
The main difficulties come from the following aspects: 1) the pan-
creas only occupies a small part of the entire CT image, as shown in
Fig. 1. There is a serious imbalance between the target and the
background, which makes it easy for the network to pay attention
to the non-target background area, resulting in misclassification;
2) the pancreas is irregular in shape and easily deformed, and
the shape, size, and position of the pancreas in the abdomen of dif-
ferent patients are different greatly; 3) in the CT image, the con-
trast between the pancreas and its surrounding tissues is weak,
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Fig. 1. Typical slice display of the CT scan in the abdomen with the pancreas area highlighted.
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which is caused by the similar range of voxel intensities, so it is dif-
ficult to distinguish the pancreas from these tissues. The borders of
the pancreas are blurred and even difficult to be seen.

These characteristics greatly increase the difficulty of segmen-
tation and may lead to the problem of blurred boundaries in the
pancreas segmentation task of purely traditional image segmenta-
tion algorithms, such as clustering [10], region growing [11] and
wavelet decomposition [12]. The characteristics also cause the
phenomenon that traditional convolutional segmentation net-
works will pay more attention to the partial area of the pancreas,
while ignoring rich global context information, which limits the
further improvement of the segmentation accuracy to a certain
extent. Recently, the global attention mechanism based on Trans-
former [13] has been able to effectively solve the above problems
and fully integrate local features and global features, which greatly
improves the performance of the network and the accuracy of seg-
mentation. The original Transformer was used in the field of natu-
ral language processing (NLP). In recent years, with the
development of deep learning research, Vision Transformer (VIT)
[14] successfully realized the application of Transformer in the
field of computer vision and achieved remarkable achievements.
A series of VIT-based segmentation models quickly occupied the
field of medical segmentation [15–17], which further promoted
the development of the field of medical image segmentation. Nev-
ertheless, these existing VIT-based networks have not addressed
the problems in pancreas segmentation well, mainly due to the
small size and the deformation of the pancreas.

Recently, Dai et al. [18] proposed a deformable convolution to
solve the problem that the size of the receptive field in the stan-
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dard convolution cannot perfectly adapt to the geometric deforma-
tion of the target. Specifically, the convolution kernel of the
deformable convolution is variable, so the corresponding receptive
field can change adaptively according to the change of the target
shape, which perfectly matches the situation where the pancreas
is deformed in size and shape in different patients. Due to the fixed
receptive field, it is difficult to further improve the performance of
standard convolution on the task of pancreas segmentation. Mean-
while, deformable convolution has been applied to the pancreas
segmentation task [19,20]. Huang et al. [19] proposed DUNet for
pancreas segmentation by combining deformable convolution
and Unet. DUNet can flexibly capture pancreatic features and
improve the geometric modeling ability of UNet, finally achieving
the Dice coefficient of 87.25 ± 3.27 % on the NIH dataset. Wang
et al. [20] proposed a dual-input v-mesh fully convolutional net-
work (FCN) to segment the pancreas. The contrast of the pancreas
was increased by complementing the image processed by a
contrast-specific graph-based visual saliency (GBVS) algorithm.
By fusing the spatial transformation and fusion (SF) model with
multi-branch residual deformable convolutional layers, a Dice
coefficient of 87.40 ± 6.80 % was finally achieved on the NIH data-
set. However, deformable convolution inevitably can only focus on
local features and cannot combine with global features.

Considering all of these, we propose to integrate deformable
convolution into the VIT architecture, which solves the problem
of deformation of the pancreas, and perfectly integrates local fea-
tures and global features. Our Trans-Deformer network can adap-
tively focus on the corresponding area according to the shape of
the target. Meanwhile, we propose a multi-input module based
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on two-dimensional wavelet decomposition to deal with the prob-
lem of blurry boundaries caused by low contrast in the pancreas.
The strategy enables our network to pay more attention to the
marginal high-frequency information of the pancreas. In response
to the problem of categories imbalance between the background
and target caused by the small size of the pancreas, the binary
cross-entropy and the dice loss are used to alleviate this problem.
In addition, deep supervision is added to enhance the robustness of
the network. These designs improve the performance of the net-
work on the task of pancreas segmentation.

The main contributions of this work can be summarized as
follows:

1) We put forward the Trans-deformer module. By subtly fus-
ing deformable convolution into VIT, it solves the deforma-
tion of the pancreas in the pancreas segmentation task.
And the proposed Trans-deformer module can be quickly
transferred to other segmentation tasks.

2) The Scale Inter-active Fusion (SIF) module is designed to
integrate local features and global features through atten-
tion interaction.

3) We come up with a multi-input module based on two-
dimensional wavelet decomposition, which makes our net-
work pay more attention to the high-frequency texture
information of the target edge. It solves the problem of
blurred boundaries caused by low contrast in the pancreas.

4) We propose the Trans-Deformer network that achieves
accurate segmentation of the pancreas and outperforms
state-of-the-art methods on publicly available pancreas
datasets, achieving the average DSC scores of 89.89 ± 1.82 %
on the NIH dataset, and 91.22 ± 1.37 % on the MSD dataset.

The rest of this paper is organized as follows. Section 2 reviews
related work. Section 3 elaborates on the primary principles and
the network architecture of our Trans-Deformer network. Experi-
ments with detailed implementation, evaluation criteria and
results are explained in Section 4. Section 5 is the discussion and
the conclusion is drawn in Section 6.
2. Related work

We have introduced the overall research background and cur-
rent situation in Section 1, and clarified the significance and diffi-
culties of pancreas segmentation research. In the following
subsections, we will review the research process of pancreas seg-
mentation in more detail, and introduce the evolution and the lat-
est development direction of Vision Transformer (VIT).
2.1. Pancreas segmentation

With the rapid development and progress of deep learning,
more and more methods have begun to deal with the challenging
task of segmenting the pancreas from abdominal CT scans. In the
existing pancreas segmentation methods, if they are divided
according to the type of input, they can be roughly divided into
two categories: input according to 2D slice and input according
to 3D block, thus giving birth to 2D network and 3D network. 2D
segmentation networks, such as fully convolutional neural net-
works (FCN) [21] and U-Net [22], have laid an important founda-
tion for the field of medical image segmentation [23]. Li et al.
[24] proposed an automatic pancreas segmentation model using
double adversarial networks with a pyramidal pooling module,
achieving the Dice coefficient of 83.31 ± 6.32 %. Li et al. [25] pro-
posed the multiscale attention dense residual U-shaped network
(MAD-UNet) to solve the problems of intraclass inconsistency
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and interclass indistinction in the segmentation of the pancreas,
achieving the Dice coefficient of 86.10 ± 3.52 % on the NIH dataset.
Li et al. [26] proposed three strategies: skip network, residual net-
work and multi-scale cross-domain information fusion to solve the
problems in pancreas segmentation, and finally achieved an 87.5
7 ± 3.26 % Dice coefficient.

Because the 2D network ignores the continuity of the pancreas
in the three-dimensional space to a certain extent, it limits the fur-
ther improvement of the network segmentation performance. 3D-
based segmentation networks, such as V-Net [27] and 3D U-Net
[28], can directly extract features from three-dimensional spatial
information, thereby avoiding the bottleneck of 2D segmentation
networks. Zhu et al. [29] proposed a 3D-based coarse-to-fine cas-
caded pancreas segmentation network and finally achieved the
Dice coefficient of 84.59 ± 4.86 % on the NIH dataset. Zhang et al.
[30] proposed a segmentation framework that combines multi-
atlas registration and the 3D level set. By using the 3D level set
to refine predicted probability maps, it effectively compensated
for the defect of incomplete pancreatic edge prediction and
achieved an 84.47 ± 4.36 % Dice coefficient on the NIH dataset.

However, due to the high requirements of the 3D network on
GPUmemory, the CT scan image input to the 3D network is usually
cut into small pieces or down-sampled to a smaller size, which lim-
its spatial context learning to a certain extent.

Based on this, the emergence of the 2.5D network has attracted
widespread attention. The 2.5D network makes up for the lack of
spatial context information in the 2D network, and it reduces the
computational cost compared to the 3D network. The final seg-
mentation result is obtained by feeding three axial 2D slices of
the CT image or one axial adjacent slice into the network, and
finally performing fusion. Since the 2.5D network uses 2D convolu-
tion to implicitly extract spatial features, it will be affected by the
topology to a certain extent. The features from input slices of dif-
ferent channels are finally mixed and output within one channel
dimension. The lack of corresponding label matches will cause fea-
tures to be confused when fused, making it difficult to distinguish
them from each other [31]. Zhou et al. [32] proposed a fixed-point
FCN model for segmenting the pancreas from abdominal CT
images. The results of segmentation in three directions were voted
and fused by the majority, finally obtaining an 82.37 % Dice coeffi-
cient. Li et al. [33] proposed a model-driven stack-based fully con-
volutional network with a sliding window fusion algorithm to
capture local spatial context features between slices for pancreas
segmentation, achieving the Dice coefficient of 85.7 ± 4.1 %. Li
et al. [31] designed a 2.5D network for generating light-weight
3D voxels by stacking three adjacent slices into three input chan-
nels to balance the use of contextual information for pancreas seg-
mentation, achieving the Dice coefficient of 86.49 ± 1.44 % on the
NIH dataset.

Of course, pancreas segmentation methods can also be divided
according to the number of experimental stages. They can be
divided into a one-stage network that is directly segmented and
a two-stage network that is positioned first and then segmented
[34–37]. Zhang et al. [34] proposed a lightweight deep convolu-
tional neural network that utilized the Scale Transferable Feature
Fusion Module (STFFM) and the Prior Propagation Module (PPM)
for coarse-to-fine pancreatic segmentation, achieving the Dice
coefficient of 84. 9 % on the NIH dataset. Chen et al. [35] proposed
a dual-view feature learning network based on attention mecha-
nism and multi-scale supervision, and finally achieved the Dice
coefficient of 85.19 ± 4.73 % on the NIH dataset through a two-
stage TVMS-Net with first localization and then segmentation. Li
et al. [36] proposed a probabilistic map guided bidirectional recur-
sive UNet (PBR-UNET), which performed coarse segmentation
through probability maps, and finally achieved the Dice coefficient
of 85.35 ± 4.13 % through bidirectional recursion on the NIH data-
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set. Hu et al. [37] proposed a saliency perception model based on
geodesic distance. By transforming the probability map into a sal-
iency map through the saliency transformation, and introducing a
saliency perception module that combined the saliency map with
the image context information in the fine segmentation stage, they
obtained the Dice coefficient of 85.49 ± 4.77 % on the NIH dataset.
Statistics have found that in terms of pancreas segmentation, the
two-stage network is generally performing better [35] than the
direct segmentation network. The phenomenon is mainly pro-
duced by the unbalanced category caused by the small size, and
the blurred boundaries caused by the low contrast in the pancreas.

Although the above methods have made significant achieve-
ments in the field of pancreas segmentation, the traditional convo-
lutional neural networks based on standard convolution have fixed
the receptive field, which ignores the rich global context informa-
tion to a certain extent, making it difficult to further optimize the
network performance.
2.2. Technology evolution based on VIT

The Transformer architecture was first proposed by Vaswani
et al. [13] to improve the performance of machine translation.
Due to the perfect combination of local information and global
information, it has been widely used in the field of natural lan-
guage processing (NLP). In recent years, a large number of experi-
ments have been carried out to transfer the advantages of
Transformer to the field of computer vision. Detection Transformer
(DETR) [38] used the Transformer network to realize the end-to-
end target detection task for the first time. Vision Transformer
(VIT) [14] laid the foundation for the application of Transformer
Fig. 2. The overview of the propose
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in the field of computer vision by cutting the image into individual
patches and transforming them into sequences, then cleverly inte-
grating them into the Transformer architecture. Segmentation
Transformer (SETR) [39] used VIT as the encoder of the network
and CNN as the decoder of the network to complete the prediction
of the semantic map.

In the field of medical image segmentation, the rapid develop-
ment of Transformer-based network architecture has further pro-
moted the advancement of the field of medical image
segmentation. UCTransNet [40] integrated the Transformer self-
attention mechanism into the channel dimension for the first time,
which made up for the gap in semantics and resolution between
low-level and high-level features through effective feature fusion
and multi-scale channel cross attention. Unlike VIT, which usually
has a low-resolution output and high computational and storage
costs, PVT [41] could be trained on dense partitions of the image
to obtain a high-resolution output. And it could gradually down-
scale the pyramid feature map to reduce large feature map calcu-
lation. Valanarasu et al. [42] proposed a self-attention
mechanism network system called MedT based on Transformer.
By using local–global training strategies, it was superior to tradi-
tional neural convolutional networks in segmentation tasks. Chen
et al. [43] proposed TransUNet, which integrated Unet and VIT,
to improve the performance of the synapse multi-organ CT dataset
in multi-organ segmentation tasks. Ji et al. [44] proposed the
MCTrans network combining rich feature information and seman-
tic structure through the self-attention mechanism and cross-
attention mechanism, which achieved better performance than
Attention Unet [45]. Hatamizadeh et al. [6] proposed a UNETR net-
work using VIT as an encoder to improve the performance of seg-
d Trans-Deformer framework.



Fig. 3. The first-order (left) and second-order (right) wavelet decomposition effects
of an abdominal CT scan slice.
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menting large-volume targets such as brain tumors and spleen on
the MSD dataset.

These VIT-based networks have achieved good results on most
medical segmentation tasks, but they have not achieved good
index improvement in the segmentation of small organs such as
the pancreas, which are easily deformable and small in size, and
also have fuzzy edges.
3. Method

In this section, we describe the proposed Trans-Deformer net-
work in more detail. We will first introduce the two-stage network
implementation process, and then present three innovative mod-
ules we put forward. Section 3.1 clarifies the multi-input module
based on two-dimensional wavelet decomposition. Section 3.2
elaborates on the SIF module that integrates local features and glo-
bal features and Section 3.3 explains the Trans-deformer module
that fuses deformable convolution into VIT.

As shown in Fig. 2, the pancreas segmentation is implemented
in a coarse-to-fine framework. First, we train a 2D Unet [22] net-
work for coarse segmentation. Of course, it can be replaced with
any other 2D segmentation network. Then, based on the pancreatic
probability map obtained by rough segmentation, we crop the
original image and fill it to the original size to obtain the focused
pancreas area, and send it to the Trans-Deformer network for fine
Fig. 4. The five inputs
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segmentation. Inspired by the Unet network, the proposed Trans-
Deformer network shaped like the letter W consists of an encoder
based on ResNeXt 101 [46], a decoder based on the channel cross
attention module [47], and a skip connection. The skip connection
includes a SIF module that integrates local features and global fea-
tures, and a Trans-deformer module based on multi-head cross
attention (MCA) and deformable convolution.
3.1. Multi-input module based on two-dimensional wavelet
decomposition

As we mentioned above, the low contrast and the blurred
boundaries seriously affect the performance of the existing net-
work on the task of segmenting small organs such as the pancreas.
Based on this, we propose to introduce two-dimensional wavelet
decomposition into the network. To be specific, we perform dis-
crete wavelet transform [48] on the original image in the prepro-
cessing stage to generate high-frequency features containing the
edge information as illustrated in Fig. 3. The operation helps the
network learn the edge of the pancreas by providing more texture
information to alleviate the problem of blurred boundaries.

Through two-dimensional wavelet decomposition, the original
image is split into low-frequency information and high-frequency
information. The low-frequency information contains the essential
characteristics of the image, mainly the areas where the bright or
gray value changes slowly in the image. The high-frequency infor-
mation including diagonal, vertical and horizontal directions,
mainly highlights the edge texture of the image, which is a supple-
ment to the image details. Notably, the high-frequency information
is exactly what is needed in the task of pancreas segmentation.

After successively applying the first-order and second-order
discrete wavelet transform to the original image, we take out the
high-frequency components and resize them to the original image
size, as a supplement to the edge information of the pancreas.
Then, to supplement inter-slice context information, two wavelet
components and the original image with the adjacent CT images
before and after the image form five inputs, which are cropped
based on the result of the coarse segmentation and padded with
zeros to the size of the original image. Finally, generated inputs
as presented in Fig. 4 are sent to the network. The above operations
force the network to pay more attention to the edge of the
of the network.



Fig. 5. The illustration of the SIF module.
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pancreas by providing more accurate edge information and richer
texture information.
3.2. Scale Inter-active fusion module

After encoding by ResNeXt 101, we get feature maps of different
scales, which respectively represent the information at different
scales of layers corresponding to the original image. According to
the architecture of the traditional Unet network, in addition to
the feature map at the bottom layer, the feature maps of other lay-
ers will be directly concatenated as a skip connection to the
upsampled high-level feature maps. Nevertheless, this straightfor-
ward concatenation is difficult to capture the inner relations
among feature maps at different scales. And the long-range depen-
dence between global context information and local structural fea-
tures is ignored easily. Inspired by the self-attention mechanism in
Transformer, we propose a novel Scale Inter-active Fusion (SIF)
module, which can combine local information with global informa-
tion, and improve the performance of the network by merging fea-
ture maps of different scales.

As shown in Fig. 5, the proposed SIF module can integrate the
features between the low-level and high-level. In the following,
we select the low-level large-scale feature for detailed analysis,
and the other branch will perform the same operation.

To be specific, we define the low-level large-scale feature as

Fi 2 RC�H�W (primary branch), where i i ¼ 1;2;3;4ð Þ represents
the layer where the SIF module is located, and define the high-

level small-scale feature as Gi 2 R2C� H=2ð Þ� W=2ð Þ (complementary
branch). The SIF module is always at the same layer as the large-

scale feature. Then we reshape Fi 2 RC�H�W into

Fi ¼ f i1; f
i
2; � � � ; f iH�W

h i
2 RC�ðH�WÞ and compress Gi as the following:

gi ¼ Flatten AvgPool Gi
� �� �

2 RC�1

where AvgPool is a two-dimensional average pooling operation, fol-
lowed by flattening. At this time, gi represents the global feature

that contains all the information of Gi, and the channel has been

halved for subsequent feature fusion with local information Fi. Fur-

ther, Fi is concatenated with gi into a sequence of length H �W þ 1,
which will be sent to the multilayer perceptron for attention fusion:

F̂
i ¼ MLP gi; f i1; f

i
2; � � � ; f iH�W

h i� �
¼ f̂

i

0; f̂
i

1; � � � ; f̂
i

H�W

� �
2 RC� H�Wþ1ð Þ

After nonlinear mapping, the fused feature F̂
i
is obtained. It not

only contains the local features of the low-level, but also integrates
the high-level global features of different scales. We get the mixed
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feature Fi
out ¼ f̂

i

1; � � � ; f̂
i

H�W

� �
2 RC� H�Wð Þ after removing the head

component. Then we reshape it to the original size as the final

result Fi
out 2 RC�H�W of the primary branch. In the same way, the

same transformation is performed on the small-scale feature to

get Gi
out 2 RC� H=2ð Þ� W=2ð Þ. Before concatenating the two different

scale features, we implement an up-sampling operation on Gi
out

to make the scale match Fi
out . Finally, through the convolution

operation, the feature map that combines the low-level local infor-
mation and the high-level global information is converted to

F̂
i

out 2 RC�H�W , to replace the original feature Fi of the low-level.
The SIF module can capture the relations among feature maps of
different scales through multilayer perceptron. Meanwhile, the
local information of the low-level and the global information of
the high-level is interacted through nonlinear mapping to make
the network robust.
3.3. Trans-deformer module based on deformable convolution

After obtaining the four fused feature maps of different scales
through the SIF module, we perform tokenization by reshaping
the feature maps into sequences of flattened 2D patches to gener-
ate tokens. Different from the way that the original VIT generates
tokens based on standard convolution, we use deformable convo-
lution to generate tokens. The main difference between deformable
convolution and standard convolution is the addition of a deform-
able offset field, which contains the learnable offset for each posi-
tion in the feature map. The added deformable offset field
enhances the network’s ability to extract features, enabling the
network to adaptively match the shape of the pancreas. By fusing
deformable convolution into VIT, the network can flexibly capture
the morphological differences of the pancreas to achieve high-
precision segmentation, finally achieving the effect of solving the
deformation of the pancreas.

The overall structure of the proposed Trans-deformer module is
presented in Fig. 6. After using deformable convolution to generate
tokens of four different scales, we will send them to L-layer multi-
head cross attention module. The resulting tokens from four layers
will generate four different Q , while K and V will be generated by
the four concatenated tokens Tcat . Specifically, the resulting tokens
Ti i ¼ 1;2;3;4ð Þ will generate Qi i ¼ 1;2;3;4ð Þ, K , V as follows:

Qi ¼ TiWQ ; K ¼ TcatWK ; V ¼ TcatWV

whereWQ 2 RCi�d,Wk 2 RCcat�d,Wv 2 RCcat�d are three weight matri-
ces, Ci is the channel dimension of layer i i ¼ 1;2;3;4ð Þ, Ccat is the
concatenation of the four-layer channel dimension, and d is the
number of patches. In our experiment, C1 to C4 are set to 64, 128,
256 and 512 respectively. With Qi 2 RCi�d, K 2 RCcat�d, V 2 RCcat�d,



Fig. 6. The structure of the proposed Trans-deformer module. The offset field at the top left shows the evolution from standard convolution to deformable convolution.
Among them, the sampling points of standard convolution and deformable convolution are respectively marked in orange and red. The purple curve from the orange point to
the red point represents the learnable offset of the deformable convolution. The offset shift is shown above the purple arrow. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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the cross attention (CA) mechanism is calculated by the following
formula:

CAiðQ ;K;VÞ ¼ softmax
QiK

Tffiffiffiffiffiffiffiffi
Ccat

p
 !

V

In the experiment, the number of heads of the multi-head cross
attention (MCA) module is set to 4, that is, the MCAi is obtained by
averaging four CAi. The size of the patch is set to 16. Then, applying
a multilayer perceptron (MLP) and residual operator, the output of
the Trans-deformer module is obtained as follows:

Oi ¼ MCAi þMLP Qi þMCAið Þ
we omit layer normalization (LN) in the above formula for simplic-
ity. The process in Equation (5) is repeated L times to build an L-
layer multi-head cross attention module, where L is set to 4 in
our implementation. Different from the self-attention of the original
VIT, our attention fusion is carried out in the channel dimension,
which can effectively interact with the information among different
layers.

Finally, we upsample the feature maps of four different scales
obtained by the Trans-deformer module and the bottom-level fea-
ture map generated by the encoder, to complete the final fusion
through the attention module layer by layer. The internal structure
of the attention module is shown in the purple area at the bottom
of Fig. 2. To be specific, we first upsample the feature map of the
high-level and halve the channel through a convolution operation
to match the low-level feature map from the skip connection. Then
we perform global average pooling and global maximum pooling
on the two branches respectively to capture the comprehensive
correlation of features among channels, after that concatenate
the results of each branch and pass them through the multilayer
perceptron. Before the final fusion, the resulting feature maps of
the two branches will be summed to perform sigmoid activation
for suppressing irrelevant features. At last, the generated channel
cross attention acts directly on the original skip connection of
the low-level as a coefficient, then concatenates with the upsam-
pling feature map of the high-level to complete the feature fusion
of the low-level.

Meanwhile, to speed up the network convergence and increase
the robustness of the network, we supplement the deep supervi-
sion module after the decoder. Specifically, the fusion feature
map obtained at the end of each layer is directly upsampled to
the original image size, which is denoted as Out0, Out1, and
Out2 respectively, and output together with the final prediction.
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The three additional outputs will participate in the final loss calcu-
lation along with the prediction, further optimizing the perfor-
mance of the network by supervising high-level features.
4. Experimental results

4.1. Datasets

We evaluate the performance of the proposed network on two
publicly available datasets: 1) 82 abdominal contrast-enhanced
CT scans from the National Institutes of Health (NIH) Clinical Cen-
ter pancreas segmentation dataset [49], which is the most widely
used publicly dataset for the pancreas segmentation task. Each
CT volume is 512 � 512 � D, where D 2 [181,466] is the number
of slices along the transverse plane. The slice thickness varies from
1.5 mm to 2.5 mm along with the depth of the CT scan. We follow
the principle of fourfold cross-validation and randomly divide the
dataset into four fixed subsets 21, 21, 20 and 20. In one cross-
validation, we train on three of the subsets and test on the remain-
ing subset, repeating four times and averaging; 2) 281 abdominal
contrast-enhanced CT scans with labeled pancreas and pancreatic
tumor from the Medical Segmentation Decathlon (MSD) challenge
pancreas segmentation dataset [50], where each CT volume is 512
� 512 � D, and D 2 [37,751] is the number of slices in CT scan. Fol-
lowing previous studies [36] on the MSD dataset, we combine the
pancreas and pancreatic tumor into a single entity as the segmen-
tation target. We divide it into four subsets containing 70, 70, 70
and 71 CT volumes respectively. The rest of the operations are con-
sistent with the NIH dataset. The 2D visualization of two datasets is
shown in Fig. 7.
4.2. Evaluation metrics

To evaluate the proposed network segmentation performance,
we use five different evaluation metrics, namely, the Dice similar-
ity coefficient (DSC), precision, recall, average symmetric surface
distance (ASD) and 95 % Hausdorff distance (HD). We define SðXÞ
and SðYÞ represent the edge point set of the prediction result and
the ground true respectively. And dfx; yg represents the Euclidean
distance between voxel x and voxel y. The details of the evaluation
metrics are as follows:

1) DSC: the Dice similarity coefficient is the most common
index for evaluating segmentation results in the field of medical



Fig. 7. 2D visualization of two datasets. Among the MSD dataset, the blue area represents the pancreas, and the grass green area represents the pancreatic tumor. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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image segmentation, which mainly measures the similarity
between the prediction and the ground truth.

2) Precision: the precision is the percentage of positives cor-
rectly predicted among all positives predicted in the prediction.

3) Recall: the recall is the percentage of positives correctly pre-
dicted among all positives in the ground truth.

4) ASD: the average symmetric surface distance is the average
distance between the prediction boundary and the ground truth
boundary, reflecting the accuracy of edge segmentation.

ASD ¼ 1
SðXÞ þ SðYÞ

X
x2SðXÞ

d x; SðYÞð Þ þ
X
y2SðYÞ

d y; SðXÞð Þ
 !

5) HD: the 95 % Hausdorff distance can evaluate the degree of
pancreatic boundary segmentation. The smaller the value of HD,
the more complete the pancreatic boundary segmentation.

HD ¼ max max
y2SðYÞ

min
x2SðXÞ

dfy; xg;max
x2SðXÞ

min
y2SðYÞ

dfx; yg
� �
4.3. Implementation details

We implemented our framework based on the PyTorch plat-
form on the Ubuntu system equipped with an NVIDIA GeForce
Table 1
The results (measured by the DSC, Precision, Recall and Testing time) of pancreas segmenta
the literature. Optimal results (described by mean ± std) are shown in bold.

Method DSC(%) Preci

M. Li et al. [24] 83.31 ± 6.32 84.09
Y. Zhang et al. [30] 84.47 ± 4.36
D. Zhang et al. [34] 84.90
H. Chen et al. [35] 85.19 ± 4.73 86.09
J. Li et al. [36] 85.35 ± 4.13 83.45
P. Hu et al. [37] 85.49 ± 4.77
H. Li et al. [33] 85.70 ± 4.10 87.40
W. Li et al. [25] 86.10 ± 3.52
J. Li et al. [31] 86.49 ± 1.44

M. Huang et al. [19] 87.25 ± 3.27 8
Y. Wang et al. [20] 87.40 ± 6.80

F. Li et al. [26] 87.57 ± 3.26 86.63
Ours 89.89 ± 1.82 89.59
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RTX 3090 graphics card of 24 GB memory. Due to memory limita-
tions, the images that entered the network were resized to 128 �
128. For the encoder, we loaded the weights of pre-trained
ResNeXt 101 on ImageNet [51].

In our experiments, we used the sum of binary cross-entropy
and dice loss as the final loss function. The expression of binary
cross-entropy usually used in binary classification is shown as
follows:

Lbce ¼ � 1
N

XN
i¼1

yi log ŷið Þ þ 1� yið Þ log 1� ŷið Þ½ �

and the dice loss, which is effective for categories imbalance [52],
can be defined as:

Ldice ¼ 1� 2
PN

i¼1yiŷiPN
i¼1yi þ

PN
i¼1ŷi

so the loss function consists of the following:

Lloss ¼ Lbce þ Ldice

where ŷi represents the predicted value of the network, yi is the
value of corresponding ground truth, and N is the number of pixels.
We adopted the strategy of deep supervision to enhance the robust-
ness of the network. Considering that shallow low-level features
tion on the NIH dataset. ‘‘-” denotes that the corresponding results are not provided in

sion(%) Recall(%) Testing time

± 8.65 83.30 ± 8.54 –
– – 3–5 min
– – 4–5 min
± 5.93 84.58 ± 8.09 3–4 min
± 7.19 82.76 ± 8.21 –
– – –
± 5.20 84.80 ± 7.50 –
– 86.43 ± 5.30 –
– – 14–15 min
8.98 89.97 10–11 min
– 87.70 ± 7.90 –
± 3.70 89.55 ± 4.03 10–11 min
± 1.75 91.13 ± 1.48 3–4 min



Table 2
The results (measured by the ASD and HD) of pancreas segmentation on the NIH
dataset. ‘‘-” denotes that the corresponding results are not provided in the literature.
Optimal results (described by mean ± std) are shown in bold.

Method ASD(mm) HD(mm)

Y. Wang et al. [20] 2.89 ± 4.78 18.41 ± 28.19
W. Li et al. [25] 1.27 ± 0.43 4.40 ± 2.99
J. Li et al. [36] 1.10 ± 0.40 3.68 ± 2.30

Ours 0.78 ± 0.08 2.09 ± 0.07

Fig. 8. The DSC comparison of the proposed network with mainstream VIT-based
medical image segmentation networks on the NIH dataset.

Fig. 10. The DSC distribution of the proposed network on the NIH dataset. The four
colors represent different folds.
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have a greater impact on network performance [53–55], we set the
dice loss scale coefficients of prediction, Out2, Out1 and Out0 as 1,
0.6, 0.3 and 0.1 respectively in training.

For data preprocessing, we empirically truncated CT intensity
values to the range [�100,240] HU and normalized them to the
range [0,1]. Data augmentation operations included random rota-
tions with angles that were integer multiples of 90 degrees, ran-
dom scaling with scaling factors between [0.8,1.2], and random
Fig. 9. Comparison of segmentation results with different VIT-based mainstream med
overlay that outlines the ground truth in the original image.
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flipping to prevent overfitting of the model. In the final output pre-
diction stage, we binarized the prediction with a bound of 0.5.

For model training, we chose stochastic gradient descent as the
optimizer of our network, the initial learning rate was set to 1 �
1e-4, and the momentum was set to 0.9. We set the epoch number
to 30 and the batch size to 8. The training time for an epoch was
about 8 min.

4.4. Segmentation results on NIH dataset

To evaluate the advantages of our model from different per-
spectives, we first compare networks that perform well on the
NIH dataset. In addition, we compare with the current mainstream
medical segmentation networks based on VIT. Finally, we visualize
the segmentation results of the proposed Trans-Deformer network.

4.4.1. Comparison with state-of-the-art methods
Table 1 shows the comparison of our network with the current

state-of-the-art networks [19,20,24–26,30,31,33–37] on the NIH
dataset using the fourfold cross-validation.
ical image segmentation networks on the NIH dataset. The leftmost column is an



Fig. 11. The presentation of segmentation results on the NIH dataset. Green represents the prediction of the network, red represents the ground truth, and yellow represents
the overlapping area. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
The results (measured by the DSC, Precision, Recall and Testing time) of pancreas segmentation on the MSD dataset. ‘‘-” denotes that the corresponding results are not provided in
the literature. Optimal results (described by mean ± std) are shown in bold.

Method DSC(%) Precision(%) Recall(%) Testing time

H. Chen et al. [35] 76.60 ± 7.30 87.70 ± 8.30 69.20 ± 12.80 –
Y. Zhang et al. [30] 82.74 – – –
D. Zhang et al. [34] 85.56 – – 16–17 min

J. Li et al. [36] 85.65 – – –
W. Li et al. [25] 88.52 ± 3.77 – 91.86 ± 5.06 –

Ours 91.22 ± 1.37 93.22 ± 2.79 91.35 ± 1.63 5–6 min

Fig. 12. The enhanced boxplot representation of fourfold cross-validation results on
the MSD dataset.
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The comparison shows that the proposed Trans-Deformer net-
work outperforms state-of-the-art methods, achieving the best
DSC of 89.89 %. The standard deviation of 1.82 illustrates that
our method is robust for different cases on the NIH dataset. While
maintaining better precision and recall, the testing time consump-
tion is relatively low, indicating the potential of the proposed net-
work for the task of pancreas segmentation. The high segmentation
accuracy and robustness demonstrate the superiority of our
method.
Table 4
The results (measured by the ASD and HD) of pancreas segmentation on the MSD
dataset. ‘‘-” denotes that the corresponding results are not provided in the literature.
Optimal results (described by mean ± std) are shown in bold.

Method ASD(mm) HD(mm)

H. Chen et al. [35] – 14.70 ± 14.93
W. Li et al. [25] 0.95 ± 0.53 3.78 ± 4.00

Ours 0.61 ± 0.11 1.97 ± 0.09



Table 5
The ablation experiments of the proposed network on the NIH dataset. ‘‘–” denotes
without a module.

Wavelet decomposition SIF Trans-deformer DSC(%)

–
p p

88.54p
–

p
87.38p p

– 86.71p p p
89.89

Table 6
The generalization experiments of the proposed network on the NIH dataset and the
MSD dataset. The results are shown in DSC(%).

Test \ Train NIH MSD NIH + MSD
NIH 89.89 % 88.13 % 90.87 %
MSD 89.17 % 91.22 % 90.84 %
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To more intuitively evaluate the advantages of the proposed
network in segmenting pancreatic margins, we present the evalu-
ation results based on distance in Table 2.

The results show that our network has better performance on
pancreatic margins. The ASD distance of 0.78 mm and the HD dis-
tance of 2.09 mm illustrate that the distance between the predic-
tion of the proposed network and the ground truth is shorter,
which is consistent with our competitive similarity-based metrics,
further indicating that the proposed Trans-Deformer network is
effective. The smaller variance demonstrates that the network is
robust.
4.4.2. Comparison with the mainstream VIT-based medical image
segmentation networks

To ensure fairness, we test and compare the current main-
stream VIT-based medical image segmentation networks on the
NIH dataset, which contains MedT, PVT, TransUNet, UCTransNet,
and all configurations are consistent with the proposed network.

Fig. 8 illustrates that the proposed Trans-Deformer network
outperforms the mainstream VIT-based segmentation networks
on the pancreas segmentation task. The results confirm the advan-
tages of our network from two aspects: on the one hand, the pre-
diction of our network only fluctuates in a small range, which
justifies that our method has good stability and robustness; and
on the other hand, the higher DSC demonstrates the effectiveness
of our method.

Fig. 9 visualizes the segmentation effect of our network and the
VIT-based mainstream medical image segmentation networks. The
proposed network segmentation results are closer in shape to the
Fig. 13. The demonstration of segmentation results of ablation experiments on the NIH d
truth, and W/O means without a module.
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ground truth, which demonstrates that our network can more
effectively mitigate the effects of being distracted by irrelevant
background regions. And accurate segmentation can also be
achieved for the edges and discontinuities of the pancreas such
as shown in the first row of Fig. 9.

4.4.3. Visualization of results
From Fig. 10 we can see that our network achieves outperform-

ing performance on the NIH dataset, and the distribution of DSC
values at different folds is quite close, indicating that the proposed
network has high robustness and can mitigate the effects of sample
changes.

Fig. 11 shows the segmentation results of the proposed Trans-
Deformer network on the NIH dataset. The presentation of precise
segmentation results and quantitative metrics indicate that our
network’s prediction is very close to the ground truth, implying
that our network can effectively capture differences in pancreas
shape and size between individuals. The competitive DSC justifies
that the deep supervision strategies and the adopted loss function
can deal with the problem of category imbalance, making our net-
work focuses more on pancreas regions than redundant back-
ground regions. The ASD and HD metrics illustrate that the
proposed Trans-Deformer network can finely segment pancreas
contours and clearly outline the edge of the pancreas to a certain
extent, thus solving the problem of deformation of the pancreas.

4.5. Segmentation results on MSD dataset

Table 3 shows the comparison of the proposed network with
current methods [25,30,34–36] that perform well on the MSD
dataset.
ataset. The leftmost column shows the overlay of the original image and the ground



Fig. 14. The visualization of the output of different layers in the deep supervision strategy. Among them, Out0, Out1, Out2 and prediction represent the different layer outputs
respectively of the proposed Trans-Deformer network. The last column shows that the ground truth is directly mapped to the original image.
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From Table 3 we can see that our network achieves a superior
DSC of 91.22 % when compared to state-of-the-art methods on
the MSD dataset. Nevertheless, it should be noted that our recall
is 91.35 %, 0.51 % lower than Li et al. [25], which means that the
network performance still has potential for further improvements.
Despite this, the standard deviation of the recall of 1.63 is lower,
and higher precision is achieved with a shorter testing time, indi-
cating that the network has better performance and higher
robustness.

Fig. 12 illustrates the DSC for the fourfold cross-validation of the
proposed Trans-Deformer network on the MSD dataset, which
reflects our network’s ability to achieve accurate segmentation of
the pancreas across different datasets.

Table 4 presents the distance evaluation between the prediction
result and the ground truth on the MSD dataset. The ASD distance
of 0.61 mm and the HD distance of 1.97 mm indicate that our net-
work achieves finer segmentation of pancreatic margins.
5. Discussion

5.1. Ablation study

To demonstrate that the core modules in the proposed network
are effective, we conduct ablation experiments of the proposed
Trans-Deformer network on the NIH dataset. As shown in Table 5,
we drop the proposed three innovative modules respectively in the
proposed network and measure the segmentation DSC metric of
the remaining network.

Table 5 shows that the proposed Trans-deformer module has
the greatest impact on network performance. After removing it,
the DSC score of the network will decrease by 3.18 %. The second
most influential is the SIF module, without it, the network DSC will
reduce by 2.51 %. The wavelet decomposition strategy also has a
1.35 % impact on network performance. To more intuitively display
the impact of the proposed innovative modules on the network, we
visualize the segmentation performance of the network after dis-
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carding a submodule alone in Fig. 13. Fig. 13 presents the following
information: firstly, the network achieves the relatively complete
pancreas segmentation with the Trans-deformer module, thus
solving the problem of pancreas deformation to a certain extent;
secondly, the SIF module further refines the segmentation results
by fusing local features and global features; at last, the details of
the edge of the pancreas can be further improved with the wavelet
decomposition module, and finally accurate pancreas segmenta-
tion can be achieved. The visualization of segmentation results fur-
ther confirms the effectiveness of each innovation module, which
is consistent with the data in Table 5.
5.2. Model generalization on different datasets

To further demonstrate the advantages of the proposed Trans-
Deformer network, we performed generalization verification on
two datasets of NIH and MSD. Specifically, the following four sets
of experiments were conducted: 1) trained on the NIH dataset
and tested on the MSD dataset; 2) trained on the MSD dataset
and tested on the NIH dataset; 3) trained on an equal mix of NIH
and MSD datasets, and tested on the remainder of the NIH dataset;
4) trained on an equal mix of NIH and MSD datasets, and tested on
the remainder of the MSD dataset. During the implementation of
the experiment, to be consistent with the previous experimental
settings, we set the ratio of the training set to the test set to 3:1,
and set the total case number of samples in each experiment to
80. The mixed dataset consisted of 30 cases randomly selected
from the NIH and MSD datasets respectively to form a mixture of
60 cases. During the test, 30 cases were randomly selected from
the remaining cases after the training set was taken out. The exper-
imental results are shown in Table 6.

From the data in Table 6, we can see that the proposed network
achieves superior performance and small DSC fluctuations on two
datasets, indicating that the proposed Trans-Deformer network has
strong generalization ability on the pancreas segmentation task
thanks to our innovative modules. Furthermore, the following
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points can be seen: 1) When the test set is fixed, the DSC score
trained on the same data set as the test set is better than training
on another dataset, indicating that there is a certain degree of dif-
ference between the two datasets. 2) When the training set is fixed,
the fluctuation of 0.72 % in the second column is much lower than
the fluctuation of 3.09 % in the third column, implying that the NIH
dataset contains a wider variety of samples. This might be because
although the MSD dataset contains more samples, the average total
number of slices per sample and the number of valid slices that
contain the pancreas are less than in the NIH dataset.

5.3. Visualization of deep supervision strategy

To highlight the effectiveness of the deep supervision strategy,
we present its advantages from a visual perspective.

Fig. 14 shows the class activation map (CAM) effect output by
different layers after the deep supervision strategy is adopted.
We can see that in the underlying feature map such as Out0, the
proposed network has been able to focus on the pancreas area
through the constraints of the deep supervision strategy, which
further explains the reason why the proposed Trans-Deformer net-
work finally achieves high-precision segmentation of the pancreas.

5.4. Limitations and future work

Although the proposed Trans-Deformer network has achieved
competitive performance in the pancreas segmentation task, it is
clear that the network still has room for improvement. Our net-
work currently segments the pancreas in a fully supervised man-
ner, which requires pixel-level annotated data to train the
network. Unfortunately, in the actual medical image segmentation
scene, it is laborious to perform pixel-level annotation on the tar-
get area, and it is usually difficult to obtain high-quality segmenta-
tion annotations. In contrast, it is more efficient to only perform
image-level annotation on samples. Therefore, in the follow-up
research, we will consider optimizing the proposed network in a
weakly supervised manner by combining it with the classification
task.
6. Conclusion

This paper proposes the Trans-Deformer network for pancreas
segmentation. In dealing with the challenging task of segmenting
the pancreas, the proposed network effectively solves the prob-
lems of pancreas deformation, the unbalanced category caused
by the small size, and the blurred boundaries caused by the low
contrast, and further improves segmentation metrics. Specifically,
we propose a Trans-deformer module combining deformable con-
volution with VIT, which enables the generated tokens to change
adaptively according to the shape of the pancreas, solving the
problem of pancreas deformation by improving segmentation
accuracy. Meanwhile, the proposed SIF module can perfectly fuse
local features and global features, and enable the network to have
a clearer expression, ensuring the intrinsic connection between the
low-level and the high-level. The module based on two-dimension
wavelet decomposition helps the network to pay more attention to
the edge of the pancreas by providing high-frequency texture
information, which solves the problem of the blurred boundaries
of the pancreas. In addition, the adopted deep supervision strategy
accelerates the convergence of the network to a certain extent, and
improves the robustness and generalization of the network.

Our method was evaluated on the publicly available NIH data-
set and MSD dataset. The results demonstrated that the proposed
Trans-Deformer network achieved comparable performance, not
only outperforming other state-of-the-art methods on both data-
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sets, but also surpassing the mainstream VIT-based medical image
segmentation networks, which proved that the proposed network
is effective. Moreover, the proposed Trans-Deformer network can
be flexibly integrated into any other segmentation network and
can be quickly adapted to other segmentation tasks.
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