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A B S T R A C T

Dynamic facial expression recognition (DFER) is of great significance in promoting empathetic machines
and metaverse technology. However, dynamic facial expression recognition (DFER) in the wild remains a
challenging task, often constrained by complex lighting changes, frequent key-points occlusion, uncertain
emotional peaks and severe imbalanced dataset categories. To tackle these problems, this paper presents a
depth neural network model based on spatial key-points optimized region feature fusion and temporal self-
attention. The method includes three parts: spatial feature extraction module, temporal feature extraction
module and region feature fusion module. The intra-frame spatial feature extraction module is composed of
the key-points graph convolution network (GCN) and a convolution network (CNN) branch to obtain the
global and local feature vectors. The newly proposed region fusion strategy based on face spatial structure is
used to obtain the spatial fusion feature of each frame. The inter-frame temporal feature extraction module
uses multi-head self-attention model to obtain the temporal information of inter-frames. The experimental
results show that our method achieves accuracy of 68.73%, 55.00%, 47.80%, and 47.44% on the DFEW,
AFEW, FERV39k, and MAFW datasets. Ablation experiments showed that the GCN module, fusion module, and
temporal module improved the accuracy on DFEW by 0.68%, 1.66%, and 3.25%, respectively. The method
also achieves competitive results in terms of parameter quantity and inference speed, which demonstrates the
effectiveness of the proposed method.
1. Introduction

Great advances have been achieved in automated facial expression
recognition (FER) based on deep learning (Zhao and Pietikainen, 2007;
Dhall et al., 2013; Wang et al., 2020a). Facial expression recognition
has great application prospects in human–computer interaction, in-
telligent assisted driving, psychological medicine and business fields.
Till now, a large number of facial expression recognition methods
have been proposed (Kossaifi et al., 2020; Zheng et al., 2023; Liu
et al., 2023). Dynamic Facial Expression Recognition (DFER) aims to
distinguish the emotional categories of the target subject from a contin-
uous video sequence. Compared to Static Facial Expression Recognition
(SFER), DFER in the wild needs to address three key issues: inconsistent
expressions in one sample, blurry peak frame and facial defects in
samples.

Expression inconsistency refers to the presence of emotions in cer-
tain frames of the sample that do not match the overall label. Fig. 1(a)
shows a sample from a in-the-wild DFER dataset. The label on the left
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representing the overall expression label and labels below are inferred
by the a SFER model, which means that the model needs to focus on
the entire sequence rather than a single frame to overcome the issue of
inconsistent sentiment categories in the video sequence. Sample peak
frame blurring refers to the lack of emotional peak frame annotations
in the dynamic expression dataset of natural scenes, and the scattered
peak frames in the samples, which increases the difficulty compared to
the controlled laboratory dataset (Lucey et al., 2010; Taini et al., 2008;
Pantic et al., 2005). As shown in Fig. 1(b), the model needs to overcome
the impact of these defects on discrimination accuracy through global
and local features.

In addition, video sequences can provide more information with
intra-frame and inter-frame. Some static information between inter-
frames is redundant for the high sampling frame rate, so most of the
DFER methods (Wang et al., 2020a; Meng et al., 2019a) first select a
certain number of frames as sequential input frames. Then extract the
spatial expression features of each frame separately with convolutional
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Fig. 1. Dynamic facial expression recognition dataset samples (a) Expression inconsistency and blurry peak frame issues, the red box is the emotion peak frames (b) Facial defects
in the samples.
neural networks (CNN) (He et al., 2016) or ViT (Dosovitskiy et al.,
2020), and finally mine the temporal expression information between
the features of sequential frames.

In the field of computer vision, the classical network for exploring
temporal information is the recurrent convolutional network (RNN)
(Zaremba et al., 2014), which can explore temporal information from
a sequence and output the sequence features. However, RNN cannot be
parallelized. Therefore, self-attentive models (Vaswani et al., 2017) that
are more effective and can be parallelized have gained the attention
of researchers. The earliest self-attentive models were proposed in the
field of natural language processing and were widely used. In the
last two years, the self-attentive model ViT has been introduced into
computer vision with good results. Inspired by this, we adopt the self-
attentive model to explore the temporal expression information for
videos.

The DFER framework proposed in this paper first select a certain
number of frames from a video as input frame sequence. Like static
face images, face videos in the wild is more likely to have interference
factors such as occlusion and side faces. To reduce the influence of these
factors, we use a method based on graph convolution network for intra-
frame feature extraction, and then propose an effective spatial region
feature fusion method to aggregate the facial region and global features
as tokens which are fed into temporal self-attention module to represent
the inter-frame information for DFER.

A new framework for DFER in-the-wild is proposed. Our major
contributions are listed as follows:

• The spatial feature extraction module utilizes facial key-points
and graph convolutional network (GCN) to enhance the spatial
features, which can overcome occlusion and defects in videos;

• We propose a novel region feature fusion module which can
achieve feature aggregation by considering the physical meaning
of facial key-points

• The inter-frame temporal module utilizes multi-head self atten-
tion mechanism to extract and enhance spatial–temporal features,
obtain a discriminative feature with better performance, and
improve the classification accuracy;

• We conduct evaluation on four DFER datasets and our method
achieves recognition WAR of 68.73%, 55.00%, 47.80%, and
47.44% on the DFEW (Jiang et al., 2020), AFEW (Dhall et al.,
2018), FERV39k (Wang et al., 2022a), and MAFW (Liu et al.,
2022a) datasets respectively. In addition, it performs well in
parameter quantity and inference speed, proving the competitive-
ness in DFER tasks.

The paper is organized as follows. Section 2 describes the related
work in dynamic facial expression recognition, self-attention and graph
convolutional network. Section 3 introduces the proposed spatial fea-
ture extraction network, fusion module and temporal feature extraction
network in detail. In Section 4, we report the experimental datasets and
experimental results. The conclusion of this paper is given in Section 5.
2

2. Related work

2.1. Dynamic facial expression recognition (DFER)

Traditional methods for face expression recognition in dynamic
videos are mainly based on manual productions, such as local binary
patterns (LBP) based on three orthogonal planes (Zhao and Pietikainen,
2007), vector gradient histograms based on three orthogonal planes
(Chen et al., 2014) and spatio-temporal local single gene binary pat-
terns (Huang et al., 2014).

Early deep learning methods mainly include frame based method
and temporal based method (Bargal et al., 2016; Kahou et al., 2013).
One frame-based method is to aggregate the network output of video
sequence frames through various methods, that is, frame aggregation.
The other frame based methods (Zhao et al., 2016; Kim et al., 2017)are
to design the network according to the peak frame. DenseNet (Liu et al.,
2018) is a densely connected network that typically serves as a feature
extraction backbone network for visual tasks. Temporal series-based
methods mostly use cyclic convolution network and 3D convolution
network. RNN and LSTM for DFER (Ebrahimi Kahou et al., 2015;
Baddar and Ro, 2019; Lee et al., 2019) first obtained the features of
each frame through the basic convolutional neural network (CNN),
and then used the cyclic convolution network and LSTM structure to
explore the temporal relationship between these features and obtain
more expression information.

Newly proposed methods use deeper networks and more unique
entry points to improve the accuracy of DFER. EC-STFL (Jiang et al.,
2020) addresses the problem of feature edge blurring and sample imbal-
ance through an Expression-Clustered Spatiotemporal Feature Learning
framework and a new EC-STFL loss. Kossaifi et al. (2020) proposed
a tensor decomposition framework for higher-order multidimensional
(separable) convolution, which compresses the network to reduce the
number of parameters to improve efficiency, thus alleviating the com-
putational burden one has to bear using 3D spatial–temporal convo-
lutional networks or higher-order multidimensional convolution. CE-
FLNet (Liu et al., 2022b) network attempts to find emotional peak
segments by segmenting the input video samples, and then optimizes
the overall classification results of the samples based on the classifica-
tion results of emotional peak segments. NR-DFERNet (Li et al., 2022)
explored the effectiveness of using inter frame differences in DFER
tasks using unique frame difference features and category suppression
losses, achieving good results. DPCNet (Wang et al., 2022b) designed a
dual stream recognition network that achieved better results on both
laboratory datasets and in-the-wild datasets. EST (Liu et al., 2023)
model not only uses the Transformer network to fuse the temporal
relationships between fragments, but also designs a prediction task to
restore unordered fragments to improve the model’s temporal predic-

tion ability. ESTLNet (Gong et al., 2024) improves recognition accuracy
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Table 1
Previous studies on in-the-wild DFER task.

Method Publish year Inputs Contribution

EC-STFL (Jiang et al., 2020) 2020 TI Propose with DFEW dataset and raise an effective module
for backbone networks in DFER.

Former-DFER (Zhao and Liu, 2021) 2021 DS A novel three-part architecture of spacial, temporal and
classify with Transformer blocks.

STT (Ma et al., 2022) 2022 DS Combine spatial–temporal attention in one block
CEFLNet (Liu et al., 2022b) 2022 Clip Propose a strategy to focus on peak segments and eliminate

the influence of irrelevant segments.
NR-DFER (Li et al., 2022) 2022 DS Using inter-frame feature differences to suppress sub-high

category and enhance the highest expression.
DPCNet (Wang et al., 2022b) 2022 DS Adopting a dual structure and a new dual loss forces model

to make consistent predictions for both branches.
T-ESFL (Liu et al., 2022a) 2022 Multimodal Using multimodal inputs to fit the proposed MAFW dataset.
LOGO-Former (Ma et al., 2023) 2023 DS Reduce parameter and improve accuracy with modifications

in attention.
EST (Liu et al., 2023) 2023 Clip Propose prediction task to restore unordered fragments to

enhance temporal ability.
ESTLNet (Gong et al., 2024) 2024 DS Designing enhancement methods for occlusion, pose, lighting

and temporal issues.
by designing enhancement methods for both spatial and temporal
features. Spatial feature enhancement uses multi-level convolution and
masked convolution, while temporal feature enhancement uses stacked
temporal Transformer blocks and GRUs.

Table 1 lists the contributions of several DFER task models in recent
years. DS represents dynamic sampling. TI represents time interpola-
tion. Clip represents clip sampling. Multimodal represents visual, audio
and text inputs. The research in Table 1 has contributed extremely
brilliant ideas in the DFER. Some of them focus on improving attention
mechanisms and Transformer structures, while others design diverse
feature enhancement methods. However, few methods address sample
defects like occlusion or utilize facial key-points and graph convolution
techniques to tackle challenge in DEFR. Thus, we propose a novel
network that use facial key-points feature fusion, GCN and temporal
attention with relatively low computational cost.

2.2. Self-attention

For temporal information in videos, besides recurrent convolu-
tional networks (Zaremba et al., 2014) and C3D (Tran et al., 2015),
Transformer can also explore temporal information well. Transformer
(Vaswani et al., 2017) was first proposed in the field of natural
language processing, and made a great breakthrough by proposing
Transformer for machine translation based on self-attentive mech-
anism. Girdhar et al. (2019) proposed a video action recognition
network based on Transformer that can aggregate spatio-temporal con-
textual features of video action recognition networks. In 2020, Vision
Transformer (ViT) (Dosovitskiy et al., 2020) network was proposed
for classification tasks and Swin-Transformer (Liu et al., 2021) was
proposed to enhance the network’s focus on local regions, which greatly
improved the performance of Transformer in computer vision. In the
field of DFER, Former-DFER (Zhao and Liu, 2021) sequentially uses
spatial attention module and temporal attention module, and utilizes
the Transformer architecture to complete the fusion of spatiotemporal
features. STT (Ma et al., 2022) integrates spatial attention mechanism
and temporal attention mechanism into the same module, immediately
executes temporal attention after executing spatial attention. LOGO-
FORMER (Ma et al., 2023) reduces parameter and improves expression
recognition accuracy through improvements in attention.

2.3. Graph convolution network

Graph convolution network (GCN) is a network used to extract
the features of graph structure data. Compared with traditional RNN
and CNN, GCN has excellent performance in processing data with
unique point and edge structures. Kipf and Welling (2016) used GCN
to complete semi-supervised classification tasks. Inspired by this, GCN
3

has attracted more attention in recent years. Many works have raised
improvements on the network (Zanfir and Sminchisescu, 2018; Zhao
et al., 2019; Liao et al., 2022) and been applied to a variety of tasks. Yan
et al. (2018) proposed spatial–temporal GCN to explore key-points
tracing on multi-frame dynamic skeleton. Chen et al. (2020) used GCN
with abstract scene graphs in cross-modal visual language tasks, which
can predict both the importance of different objects in different time
steps and the spatial relationship between multiple objects. Wang et al.
(2020b) fused the graph matching into GCN to avoid the occlusion and
folding of difficult samples. Motivated by this, in the field of DFER, we
borrow the rich function of graph convolution, and use GCN to assist in
extracting the spatial information of key-points of facial expression, so
as to reduce the difficulty of occlusion and side face in DFER datasets.

3. The proposed method

The overall framework of the DFER network proposed in this paper
is shown in Fig. 2, which mainly includes a spatial feature extraction
network and a temporal feature extraction network, and an effective
feature fusion strategy is designed between them. Firstly, the face
frames selected from the video are sent to the spatial feature extrac-
tion network (FEM) to extract global and local feature vector groups
respectively. Then these feature vector groups are sent to the graph
convolution network (GCN) for optimization. After that, feature vector
groups corresponding to each frame are fused into one through a
feature fusion module. Finally, the enhanced spatial information from
each frame in the same video are sent to the temporal module to
explore the temporal information and perform the final classification
prediction.

3.1. Spatial feature extraction network

The spatial feature extraction network mainly consists of two parts:
face image feature extraction module (FEM) and graph convolution
network (GCN) enhancement module. As shown in Fig. 3, the two
networks are cascaded together to extract and optimize global and local
information from the input intra-frame image. These two networks will
be described in detail below.

3.1.1. Feature extraction module
The facial spatial feature extraction module simultaneously extracts

the semantic features of the image and the spatial features of the
facial key-points. The upper CNN branch takes a ResNet18 as backbone
and make slight modifications on it. We keep the average pooling
layer and fully connected layer while change the stride of last two
convolution layers to obtain a larger feature map. The triplet atten-
tion module (Misra et al., 2021) has been proved to perform well in
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Fig. 2. The overall network architecture.
Fig. 3. Diagram of spatial feature extraction network.
processing interactive information of channel dimension and spatial
dimension. So, we apply the triplet attention to process feature maps
for richer expression information. For a video sample, 𝑁 frames of
face images 𝑋 =

{

𝑥1, 𝑥2,… , 𝑥𝑁
}

are selected, and these images are
sent to the spatial feature extraction network respectively. The global
feature map 𝐹𝑖 is obtained from the input image 𝑥𝑖 after ResNet18 and
Triplet-Attention. The formula is as follows:

𝐹𝑖 = 𝑇 𝑟𝑖
(

𝑅𝑒𝑠𝑛𝑒𝑡
(

𝑥𝑖
))

(1)

where 𝑅𝑒𝑠𝑛𝑒𝑡 (⋅) represents the adjusted ResNet18 and 𝑇 𝑟𝑖 (⋅) represents
Triplet-Attention. In the landmark guided attention branch, we utilize
dlib to detect 68 face landmarks (the green points on the woman face)
4

from the input face image. We select 16 key-points (the red points)
representing eyebrows, eyes, mouth and nose from 68 landmarks based
on location. In particular, the cheek part also contains rich expression
information, we propose two extra key-points representing the cheek
which are calculated from the other neighbor landmarks, shown as
blue points. In detail, we choose a fixed three surrounding points to
calculate one cheek point, these three points form a triangle area.
We regard the center of gravity of triangle areas as the key-points of
two cheeks. As shown in Fig. 3, the 18 key-points are obtained and
taken as the center to generate 18 Gauss distribution attention heat
maps 𝐴𝑗

𝑖 (𝑗 = 1, 2,… , 18). These Gaussian heatmaps are used to guide
the feature maps of CNN branches, which are copied to the same depth
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Fig. 4. Diagram of feature fusion module.
as the feature map and multiplicated by the corresponding elements.
Finally, a set of local feature vectors is obtained by formula:

𝑣𝑗𝑖,𝑙 = 𝑔
(

𝐹𝑖 ⊙ 𝐴𝑗
𝑖

)

(2)

where ⊙ represents element-wise multiplication and 𝑔 (⋅) represents
global average pooling. The global average pooling operation is carried
out on 𝐹𝑖 to obtain the vector 𝑣𝑖,𝑔 with global information. Finally, the
set of vectors output by the feature extraction module is represented
by 𝑉𝑖 and 𝑉𝑖 =

{

𝑣1𝑖,𝑙 , 𝑣
2
𝑖,𝑙 ,… , 𝑣18𝑖,𝑙 , 𝑣𝑖,𝑔

}

.

3.1.2. Key-points optimization with GCN
Under in-the-wild facial expression datasets, many faces have in-

terference factors such as occlusion, side face, and light shadow. The
18 key-points we obtained may also be affected by these interference
factors. To suppress the interfering factors and emphasize the undis-
turbed local information, we simplified a graph convolutional network
from ADGC (Wang et al., 2020b). As shown in Fig. 3 right, the graph
convolutional network uses the relationship between the whole and the
part to obtain the local information that needs to be emphasized. The
formula is as follows:

𝑉 𝐺𝐶𝑁
𝑖 = 𝑓 [𝑊𝑎 ⊙ 𝐴⊗ 𝑉 𝑙

𝑖 + 𝑉 𝑙
𝑖 ];𝑉

𝑔
𝑖 (3)

𝑊𝑎 = 𝑅𝑒𝐿𝑈 (𝑉 𝑙
𝑖 ⊗𝑊𝑙𝑒𝑎𝑟𝑛 ⊗ 𝑉 𝑔𝑇

𝑖 ) (4)

where ⊗ represents matrix multiplication, ⊙ represents element-wise
multiplication, 𝑓 represents fully connection layer with 𝑅𝑒𝐿𝑈 and ;
represents concatenation. 𝑊𝑙𝑒𝑎𝑟𝑛 is used to learn from the input vector
𝑉 𝑙
𝑖 and 𝑉 𝑔

𝑖 . 𝐴 is the adjacency matrix of 18 key-points as shown in
Fig. 2 right. After one residual connection and fully connect layer,
the final 𝑉 𝐺

𝑖 is similar to the concatenation of 𝑉 𝑙
𝑖 and 𝑉 𝑔

𝑖 as input
but dimension is reduced from 512 to 128. Therefore, the output of
a video sample through the feature extraction module and the graph
convolution network is 𝑉𝐺𝐶𝑁 =

{

𝑉 𝐺
1 , 𝑉 𝐺

2 ,… , 𝑉 𝐺
𝑁 ,

}

.

3.2. Feature fusion module

In order to explore the temporal relationship between frames in
video in the temporal feature extraction network, the feature vector
group 𝑉 𝐺

𝑖 corresponding to each frame needs to be fused to obtain a
feature vector 𝑣𝑖 that can represent a frame of facial image. This paper
proposes a feature fusion method based on face spatial structure.

The fusion method based on face spatial structure is to divide the
face into several regions, calculate the mean value of local feature
vectors in each region, and then splice them. As shown in Fig. 4(a),
the face is divided into three areas according to the face structure:
the upper left part of the left eye eyebrow, the upper right part of the
5

right eye eyebrow, and the lower part of some cheeks and the whole
mouth. Then, as shown in Fig. 4(b), calculate the mean value of the
feature vector corresponding to the face key-points in the three regions,
regardless of the two key-points on the bridge of the nose, that is, the
mean value of the five local feature vectors in the upper left part, the
mean value of the five local feature vectors in the upper right part
and the mean value of the six local feature vectors in the lower half.
Finally, three feature vectors representing various regions are obtained.
The three feature vectors are compared with the global eigenvector 𝑉 𝑔

𝑖
to obtain a feature vector 𝑣𝑜𝑢𝑡𝑖 representing the 𝑖th frame.

After spatial feature fusion, the features 𝐹𝑠𝑝𝑎𝑡𝑖𝑎𝑙 =
{

𝑣𝑜𝑢𝑡1 , 𝑣𝑜𝑢𝑡2 ,… , 𝑣𝑜𝑢𝑡𝑁
}

of the whole video are obtained. Each feature vector here represents the
information of a frame of face image.

In order to make the spatial feature extraction network prefer to
obtain expression information and reduce the impact of identity infor-
mation and interference information on the temporal feature extraction
network, an auxiliary loss function is used to supervise the spatial
feature extraction network. Firstly, take the average value of the fused
video feature 𝐹𝑠𝑝𝑎𝑡𝑖𝑎𝑙, then pass through the full connection layer, and
finally calculate the cross-entropy loss. The formula is as follows:

𝐿𝑆 = 𝐿class

(

𝐹𝐶

(

1
𝑁

×
𝑁
∑

𝑛=1
𝑣𝑛

))

(5)

where 𝐹𝐶 (⋅) is a full connection layer network, and 𝐿𝑐𝑙𝑎𝑠𝑠 (⋅) is cross
entropy loss of multi classification.

3.3. Temporal feature extraction network

The self-attention (Vaswani et al., 2017) model can obtain the
temporal information in long-distance sequences well, so this work uses
a method based on the Multi-head Self-attention (MSA) module to ex-
plore the timing relationship from inter-frames to accurately determine
the expression class of the video.

In order to better explore the timing information and obtain the
final expression classification results, the video feature 𝐹𝑠𝑝𝑎𝑡𝑖𝑎𝑙 needs
to be processed before it is input into the multi-head self-attention
module. The formula is as follows:

𝑧0 =
[

𝑥class ;𝐹spatial
]

+ 𝐸pos =
[

𝑥class ; 𝑣1; 𝑣2;⋯ ; 𝑣𝑁
]

+ 𝐸pos (6)

where 𝑥𝑐𝑙𝑎𝑠𝑠 is of the same size as 𝑣𝑖. Since the output of the self-
attention module is also an 𝑁 feature vector, which is not conducive to
the final expression classification task, a randomly initialized learnable
vector 𝑥𝑐𝑙𝑎𝑠𝑠 is used here to implement the classification task. is a
learnable position embedding to represent the timing information, and
𝐸 is also randomly initialized.
𝑝𝑜𝑠
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The query vector 𝑞, the key vector 𝑘, and the value vector 𝑣 are then
computed for these features with the following equations:
[

𝑞(𝑙,ℎ), 𝑘(𝑙,ℎ), 𝑣(𝑙,ℎ)
]

= 𝐿𝑁
(

𝑧𝑙−1
)

[

𝑊 (𝑙,ℎ)
𝑞 ,𝑊 (𝑙,ℎ)

𝑘 ,𝑊 (𝑙,ℎ)
𝑣

]

(7)

where 𝐿𝑁 (⋅) denotes layer normalization and 𝑊 is the learnable
parameter matrix. In order to learn more possibilities and expand the
width of the network, a multi-headed self-attentive structure is used
here, so here h represents the ℎth attention head, ℎ ∈ {1,… ,𝐻}, and 𝐻
is the hyperparameter of multi-heads. In addition, a single-layer multi-
headed self-attentive network cannot learn the timing information
between frames adequately, so a multi-layer serially connected multi-
headed self-attentive network is used here, where 𝑙 represents the 𝑙th
layer of the multi-headed self-attentive network, 𝑙 ∈ {1,… , 𝐿}, and L
denotes the number of layers.

Then the self-attentive weights are calculated using the query vector
𝑞 and the key vector 𝑘, and the formula is as follows:

𝐴(𝑙,ℎ) = sof tmax

(

𝑞(𝑙,ℎ)
(

𝑘(𝑙,ℎ)
)𝑇

√

𝑑𝑘

)

(8)

here (⋅)𝑇 denotes the matrix transpose and 𝑑𝑘 denotes the dimensions
f 𝑞 and 𝑘. The attention matrix 𝐴(𝑙,ℎ) is used to optimize the value
ector 𝑣 with the following equation:
(𝑙,ℎ) = 𝐴(𝑙,ℎ)𝑣(𝑙,ℎ) (9)

Since a multi-headed self-attentive network is used, the values of
he different attention heads need to be fused. In addition, a residual
tructure is used to ensure that no information is lost. The formula is
s follows:

𝑙 = 𝑊𝐻

⎡

⎢

⎢

⎣

𝑠(𝑙,1)

⋮
𝑠(𝑙,𝐻)

⎤

⎥

⎥

⎦

+ 𝑧𝑙−1 (10)

here 𝑊𝐻 is the learnable parameter matrix. After fusing the informa-
ion from multiple attention heads, a multilayer perceptron (MLP) is
lso used to further optimize the features. The final output of the 𝑙th
ayer multi-headed self-attentive network is obtained as follows:
𝑙 = 𝑀𝐿𝑃

(

𝐿𝑁(𝑦𝑙)
)

+ 𝑦𝑙 (11)

The 𝑧𝐿 is obtained after L-layer multi-headed self-attentive network.
learnable classification vector 𝑥𝑐𝑙𝑎𝑠𝑠 has been added in 𝑧0, so the

rained classification vector 𝑥𝐿𝑐𝑙𝑎𝑠𝑠 is obtained at the same position in 𝑧𝐿.
𝐿
𝑐𝑙𝑎𝑠𝑠 is operated by fully connected layers to obtain the final expression
lassification vector 𝑣𝑐𝑙𝑎𝑠𝑠.

The multiclassification cross-entropy loss is calculated for 𝑣𝑐𝑙𝑎𝑠𝑠 with
he following equation:

𝑇 = 𝐿𝑐𝑙𝑎𝑠𝑠
(

𝑣𝑐𝑙𝑎𝑠𝑠
)

(12)

herefore, in the training phase, the total loss function of the video
xpression recognition network proposed in this paper is as follows:

= 𝜆 × 𝐿𝑆 + (1 − 𝜆) × 𝐿𝑇 (13)

here 𝜆 is a hyperparameter and the value of 𝜆 is set to 0.2 by the
blation experiment. in the experimental section of this paper, this
blation experiment will be visualized. In the inference stage, only the
inal output of the temporal feature extraction network, 𝑣𝑐𝑙𝑎𝑠𝑠, is used
s the expression classification prediction result.

. Experiments and analysis

.1. Datasets

To verify the effectiveness of the proposed method, we conduct
xperiments were conducted on four in-the-wild DFER datasets. The
etails of the in-the-wild DFER datasets are summaried in Table 2.
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Table 2
The details of the in-the-wild DFER datasets.

Dataset Training set Validation set Fold nums

AFEW (Dhall et al., 2018) 773 383 One-fold
DFEW (Jiang et al., 2020) ≈ 9400 ≈ 2300 Five-fold
FERV39K (Wang et al., 2022a) 31 088 7847 One-fold
MAFW (Liu et al., 2022a) ≈ 7300 ≈1830 Five-fold

AFEW (Acted Facial Expressions In The Wild) (Dhall et al., 2018) is
n in-the-wild dataset with a collection of video clips from different film
nd television productions. The AFEW has been the evaluation dataset
or the Emotion Recognition in The Wild Challenge (EmotiW) from
013 to 2019, during which time the dataset was updated. Expressions
n the AFEW dataset are spontaneous and the AFEW is a temporal mul-
imodal database containing both audio and video data. The samples
re labeled with seven expressions and 1809 videos are available in the
FEW dataset, including 773 in the training set, 383 in the validation
et, and 653 in the test set. To ensure data rigor, there are no duplicate
ideos in these three sets, and even the identities of the people in the
ideos are not the same. Since the test set is not publicly available, this
aper uses the training set and the validation set for experiments.
DFEW (Dynamic Facial Expressions in the Wild) (Jiang et al., 2020)

s an in-the-wild dataset proposed in 2020. The dataset contains sam-
les from more than 1500 close-to-life HD movies covering a variety
f topics that realistically reflect people’s facial movements in various
nvironments. The final dataset production team edited 16,372 video
amples, and a total of 12 experts annotated each video 10 times inde-
endently. These samples were classified into seven basic expressions.
n addition, the dataset production team extracted image frames for
ach video and removed the background information from each frame,
hich greatly reduced the cost of dataset pre-processing. The data are
valuated using a five-fold cross-validation, where the samples of this
ataset are evenly divided into five non-repeating parts, and one of the
arts is selected as the test set and the other samples are used as the
raining set.
FERV39K (Wang et al., 2022a) dataset is a DFER dataset publicly re-

eased by a research team from Fudan University in 2022. It consists of
8935 video segments and 7 emotion categories, making it the largest
ynamic expression recognition dataset currently available. Each video
ample is independently annotated by 30 professional annotators to
nsure high-quality labels are obtained. This dataset is divided into four
ategories according to different scene environments, including Daily
ife, Week interactive shows, Strong interactive shows, and Anomaly
ssues. It can also be further subdivided into 22 more specific scenes.
hanks to the large sample size, each of the four main subsets contains
bout 10000 video samples. Typically, on this dataset, 80% is used as
he training set and 20% as the validation set to partition and obtain
odel evaluation metrics.
MAFW (Liu et al., 2022a) dataset is a large-scale in-the-wild facial

FER dataset publicly released by China University of Geosciences in
022. This dataset contains 10045 video samples and is the first large-
cale multimodal emotion recognition task dataset with single category
abels, multi category labels, and Chinese English sentiment description
ext labels. When recognizing a single expression, these samples are
ivided into 11 categories, including anger (AN), disgust (DI), fear (FE),
appiness (HA), sadness (SA), surprise (SU), contempt (CO), anxiety
AX), helplessness (HL). Disappointment (DS), Neutrality (NE). Similar
o the DFEW dataset, it divides into five subsets for five fold cross
alidation.

.2. Implementation details

Our method is implemented with Pytorch framework and trained on
Titan GPU with 24 GB of memory. During the training phase, the size
f each batch is set to 64 and epoch is set to 80. The initial learning
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Table 3
Comparison with SOTA methods on DFEW. The best results are highlighted in bold, the suboptimal result are highlighted in underline. The indicators in the table are the average
results of the DFEW five-fold cross validation experiment.

Method Params (M) Accuracy of 7 emotion classes Metric

Happy Sad Neutral Anger Surprise Disgust Fear UAR (%) WAR (%)

C3D (Tran et al., 2015) 78 75.17 39.49 55.11 62.49 45.00 1.38 20.51 42.74 53.54
P3D (Qiu et al., 2017) 98 74.85 43.40 54.18 60.42 50.99 0.69 23.28 43.97 54.47
3D Resnet18 (Hara et al., 2018) 33 76.32 50.21 64.18 62.85 47.52 0.00 24.56 46.52 58.27
Resnet18+LSTM (Zhao and Liu, 2021) – 83.56 61.56 68.27 65.29 51.26 0.00 29.34 51.32 51.32
Resnet18+GRU (Zhao and Liu, 2021) – 82.87 63.83 65.06 68.51 52.00 0.86 30.14 51.68 64.02
Former-DFER (Zhao and Liu, 2021) 18 84.05 62.57 67.52 70.03 56.43 3.45 31.78 53.69 65.70
STT (Ma et al., 2022) – 87.36 67.90 64.97 71.24 53.10 3.49 34.04 54.58 66.45
CEFLNet (Liu et al., 2022b) 13 84.00 68.00 67.00 70.00 52.00 0.00 17.00 51.14 65.35
NR-DFERNet (Li et al., 2022) 19 86.42 65.10 70.40 72.88 50.10 0.00 45.44 55.77 68.01
DPCNet (Wang et al., 2022b) 51 89.93 64.61 67.12 63.18 53.67 15.86 31.56 55.13 66.32
EST (Liu et al., 2023) 43 86.87 66.58 67.18 71.84 47.52 5.52 28.49 53.43 65.85
LOGO-Former (Ma et al., 2023) – 85.39 66.52 68.94 71.33 54.59 0.00 32.71 54.21 66.98

Ours 17 88.42 67.39 71.75 72.72 54.77 0.00 36.90 55.85 68.73
Fig. 5. Confusion Matrix on DFEW dataset.
rate is 0.001 and is multiplied by 0.1 at the 40th and 60th cycles. Adam
optimizer with 𝛽1 = 0.9 and 𝛽2 = 0.99 is adopted. For the multi-headed
self-attentive module, let 𝐻 = 8, which is the 8-headed self-attentive
module. In addition, since the expression features have been extracted
in the spatial feature extraction module and the self-attentive module
is mainly used to explore the temporal information and classification,
only a 3-layer multi-headed self-attentive network is used, 𝐿 = 3.

4.3. Comparison to state of the art models

Experimental results on four datasets are presented below, which
contains UAR and WAR indicators and visualizations.
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4.3.1. Comparison on DFEW
As shown in Table 3, our method achieves 68.73% WAR and 55.85%

UAR on the DFEW dataset, which is 0.72% higher than NR-DFERNet (Li
et al., 2022) on WAR and 0.09% higher on UAR, while reducing the
number of parameters by 2M. On the accuracy of the 7 emotional base
categories, neutral reached the best level, while the five categories of
happiness, sadness, anger, surprise, and fear reached the second best
level.

Fig. 5 shows the confusion matrix obtained in the five-fold cross
validation experiment on the DFEW dataset. It can be seen from the
figure that our method has ideal recognition accuracy in the four
categories of happiness, sadness, neutrality and anger, while accuracy
on disgust category is 0 like other methods. We argue that the reason is
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Table 4
Comparison with SOTA methods on AFEW. The best results are highlighted in bold,
the suboptimal result are highlighted in underline.

Method Params (M) UAR (%) WAR (%)

EmotiW-Baseline (Dhall et al., 2018) – – 38.81
C3D (Tran et al., 2015) 78 43.75 46.72
DenseNet161 (Liu et al., 2018) 27 – 51.44
Emotion-FAN (Meng et al., 2019b) – – 51.18
Emotion-BEEU (Kumar et al., 2020) – – 52.49
3D ResNet18 (Hara et al., 2018) 33 42.14 45.67
ResNet18+LSTM (Zhao and Liu, 2021) – 43.96 48.82
ResNet18+GRU (Zhao and Liu, 2021) – 45.12 49.34
Former-DFER (Zhao and Liu, 2021) 18 47.42 50.92
CEFLNet (Liu et al., 2022b) 13 48.29 53.98
EST (Liu et al., 2023) 43 49.57 54.26
ESTLNet (Gong et al., 2024) – – 53.79

OURS 17 50.14 55.00

Fig. 6. Confusion Matrix on AFEW dataset.

the serious class imbalancement in the dataset, with less than 2% of the
samples being disgusted. At the same time, disgust itself has ambiguity,
and people usually suppress disgust in natural scenes. Therefore, its
facial features are similar to neutrality, leading to a decrease in the
accuracy of the model’s recognition of disgust categories.

4.3.2. Comparison on AFEW
As shown in Table 4, our method achieves 55.00% WAR and 50.14%

UAR on the AFEW dataset. Compared to the EST (Liu et al., 2023)
model, ours improves UAR by 0.57%, WAR by 0.74%, and reduces pa-
rameter quantity by 60.5%. The overall results are significantly better
than other methods. Fig. 6 shows the confusion matrix calculated on the
AFEW dataset. Results are similar to those on DFEW dataset, with ideal
performance in the four categories of happiness, sadness, neutrality,
and anger, while the other three categories perform poorly. On the one
hand, it is because the AFEW dataset also has class imbalance issues.
On the other hand, it is due to the fine-tuning of the model trained from
DFEW, which results in poor results in three categories.

4.3.3. Comparison on FERV39k
The results of our method on the FERV39k dataset are shown in

Table 5. Our method perform well on neutral and anger expressions
and achieved 47.80% WAR and 35.16% UAR on FERV39K, slightly
weaker than the STT (Ma et al., 2022), NR-DFERNet (Li et al., 2022)
and LOGO-Former (Ma et al., 2023) models.
8

Thanks to the large amount of data and detailed scene segmentation
of FERV39k, researchers can explore strategies to improve the accuracy
of expression recognition under different scene data. Table 6 shows the
performance indicators of our method on four main subsets of FERV39k
(DL11k, WIS9k, SIA10k and AI9k) and several sub subsets (social,
conflict, Argue, Action and ElegantArt), with significant improvements
compared to several baseline methods (Wang et al., 2022a) and their
improved methods.

4.3.4. Comparison on MAFW
The results on the MAFW dataset are shown in Table 7. The over-

all performance of our method is high, achieving 47.44% WAR and
33.39% UAR. Compared with the T-ESFL (Liu et al., 2022a) model,
it lags behind by 0.74% in WAR and exceeds 0.11% in UAR, and is
significantly higher than other models. Our method achieved the best
results in sadness (SA) and anxiety (AX), followed by the second best
results in anger (AN) and helplessness (HL) categories, and is similar to
the best results in other categories.

4.3.5. Model size and inference speed
Table 8 compares parameter quantity and inference efficiency of

some methods and our model. Parameter quantity of some other models
have been shown in the previous tables. To make a fair comparison
with these models, we use the full model to measure the computational
cost and conduct experiments on a RTX3090 GPU. The training time is
measured on the first-fold of DFEW dataset of 80 epoches even though
our model achieved the best results in 65th epoch, Former-DFER reach
the best in 93th epoch, and NR-DFER reach the best in 90th. Our
method results in the competitive performance with a considerable cost
and processing speed. It shows the possibility of our method being
applied since our model can process real-time input with a sequence
of 16 frames.

4.4. Ablation experiment

4.4.1. Effectiveness of the architecture design
The method proposed in this paper contains different modules, and

to verify the impact of these modules on DFER, ablation experiments
were designed on the DFEW dataset as in Table 9. The different
structures are shown in Fig. 7 and multi-frame legend is omitted in
order to simplify the drawing. Fig. 7(a) shows the baseline approach
for the whole network, using only the feature extraction module (FEM)
in the spatial feature extraction network to extract features, and then
calculating the mean value of all feature vectors for all frames and using
the fully connected layer to obtain the classification vectors without
using the graph convolution network and the temporal feature extrac-
tion network; Fig. 7(b) only uses the spatial feature extraction network;
Fig. 7(c) uses LSTM instead of the multi-headed self-attentive model
MSA to resolve the differences between temporal networks; Fig. 7(d) is
designed to verify the effect of the graph convolution module on video
face expression recognition; Fig. 7(e) is the full network proposed in
this paper.

As can be seen from Model A and Model B in Table 9, the addition
of the graph convolution optimization module can improve the recogni-
tion accuracy by 0.68% over the baseline method. Also for the ablation
experiment of the graph convolution module, Model E improves the
recognition accuracy by 1.43% over Model D, which indicates that the
self-attentive module in the temporal feature extraction network can
further amplify the performance of the graph convolution module. The
recognition accuracy of model E is 3.25% higher than that of model B,
which illustrates the importance of the self-attentive module for video
face expression recognition. And the comparison results of model C
and model E show that the self-attentive module is more capable of
acquiring temporal expression information in videos than the LSTM.
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Table 5
Comparison with SOTA methods on FERV39k. The best results are highlighted in bold, the suboptimal result are highlighted in underline.

Method Params (M) Accuracy of 7 emotion classes Metric

Happy Sad Neutral Anger Surprise Disgust Fear UAR (%) WAR (%)

C3D (Tran et al., 2015) 78 48.20 35.53 52.71 13.72 3.45 4.93 0.23 22.68 31.69
P3D (Qiu et al., 2017) 98 61.85 42.21 49.80 42.57 10.50 0.86 5.57 30.48 40.81
3D Resnet18 (Hara et al., 2018) 33 57.64 28.21 59.60 33.29 4.70 0.21 3.02 26.67 37.57
Resnet18+LSTM (Zhao and Liu, 2021) – 61.91 31.95 61.70 45.93 14.26 0.00 0.70 30.92 42.59
Former-DFER (Zhao and Liu, 2021) 18 65.65 51.33 56.74 43.64 21.94 8.57 12.53 37.20 46.85
STT (Ma et al., 2022) – 69.77 47.81 59.14 47.41 20.22 10.49 9.51 37.76 48.11
NR-DFERNet (Li et al., 2022) 19 69.18 54.77 51.12 49.70 13.17 0.00 0.23 35.82 48.54
LOGO-Former (Ma et al., 2023) – – – – – – – – 38.22 48.13

Ours 17 64.90 49.95 66.24 51.54 13.25 0.00 0.00 35.16 47.80
Table 6
Comparison with menchmarks on FERV39k subsets. The best results are highlighted in bold, the suboptimal result are highlighted in underline.

Method All DL11k WIS9k SIA10k AI9k Social Conflit Argue Action Art

R18 39.33 39.75 40.50 42.31 33.90 39.74 39.52 44.09 50.61 33.33
R50 30.57 30.46 32.52 30.56 30.14 27.51 31.14 36.96 37.80 31.35
C3D 31.69 26.95 30.15 42.70 27.29 34.50 21.96 31.52 35.98 28.97
I3D 38.78 38.56 38.52 40.55 37.44 37.55 34.93 43.34 39.63 37.72

Ours 47.80 49.88 44.83 46.56 47.65 52.73 47.66 59.28 59.46 55.74
able 7
omparison with SOTA methods on MAFW. The best results are highlighted in bold, the suboptimal result are highlighted in underline. The indicators in the table are the average
esults of the MAFW five-fold cross validation experiment.
Method Accuracy of 11 emotion classes Metrics

AN DI FE HA NE SA SU CO AX HL DS UAR(%) WAR (%)

ResNet18 (He et al., 2016) 45.02 9.25 22.51 70.69 35.94 52.25 39.04 0.00 6.67 0.00 0.00 25.58 36.65
ViT (Dosovitskiy et al., 2020) 46.03 18.18 27.49 76.89 50.70 68.19 45.13 1.27 18.93 1.53 1.65 32.36 45.04
C3D (Tran et al., 2015) 51.47 10.66 24.66 70.64 43.81 55.04 46.61 1.68 24.34 5.73 4.93 31.17 42.25
Res+LSTM (Zhao and Liu, 2021) 46.25 4.70 25.56 68.92 44.99 51.91 45.88 1.69 15.75 1.53 1.65 28.08 39.38
ViT+LSTM (Liu et al., 2022a) 42.42 14.58 35.69 76.25 54.48 68.87 41.01 0.00 24.40 0.00 1.65 32.67 45.56
C3D+LSTM (Liu et al., 2022a) 54.91 0.47 9.00 73.43 41.39 64.92 58.43 0.00 24.62 0.00 0.00 29.75 43.76
T-ESFL (Liu et al., 2022a) 62.70 2.51 29.90 83.82 61.16 67.98 48.50 0.00 9.52 0.00 0.00 33.28 48.18

Ours 61.87 13.28 15.20 74.40 51.75 69.18 47.20 0.00 28.42 5.66 0.00 33.39 47.44
Table 8
Comparison on parameter quantity and inference efficiency.

Method Params (M) Inference speed (samples/s) Training time (h) WAR on DFEW

Dense-161 (Liu et al., 2018) 27 4 19 60.40
Former-DFER (Zhao and Liu, 2021) 13 86 17.5 65.70
NR-DFER (Li et al., 2022) 19 76 8.5 68.01

Ours 17 52 6 68.73
Fig. 7. Ablation Study on proposed components.
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Table 9
Ablation study on proposed components.

Model FEM GCN LSTM MSA WAR(%)

A
√

× × × 64.80
B

√ √

× × 65.48
C

√ √ √

× 66.72
D

√

× ×
√

67.30

E
√ √

×
√

68.73

Table 10
Ablation experiment of spatial feature fusion module.

Method DFEW WAR(%) AFEW WAR(%)

mean-based fusion method 67.07 53.95
LSTM-based fusion method 67.02 53.68
structure-based fusion method 68.73 55.00

4.4.2. Ablation study on fusion module
To verify the effect of spatial feature fusion module, we designed

an ablation experiments with other fusion methods in Table 10. The
mean-based fusion method is to directly calculate the mean value for
the feature vector group. The LSTM-based fusion method is to input
the feature vector group into the LSTM network, and the output of the
last node is used as the fusion result. From the experimental results
in Table 10, we can see that the designed fusion method based on
face spatial structure can achieve better expression recognition results,
which shows that the study of face spatial structure is beneficial to the
research work of expression recognition.

4.4.3. Ablation study on hyperparameters
The total loss function of our method is 𝐿 = 𝜆 × 𝐿𝑆 + (1 − 𝜆) × 𝐿𝑇 .

In order to obtain a better weight of the loss function, we designed
experiments for analysis, and the experimental results are shown in
Fig. 8. Since 𝐿𝑆 is an auxiliary loss function and 𝐿𝑇 is the final
classification loss, 𝜆 cannot exceed 0.5. From the experimental results
in the figure, we can see that the best expression recognition result of
68.73% can be achieved when 𝜆 = 0.2.

We also conduct experiments to verify the effectiveness of temporal
transformer block depth and Multi-head Self-attention (MSA) module
on the accuracy of expression recognition. As shown in Tables 11 and
12, the best result can be achieved when heads of Self-attention equal
8 and depth of transformer blocks equals 3. Since the spatial feature
has been extracted, temporal information requires relatively shallow
blocks and network with deeper structure performs no better than the
shallower one. Moreover, for in-the-wild DFER tasks, deeper network is
likely to entail overfitting since the strong class imbalance. We argue
that DFER tasks involve video samples with small action amplitudes
and a concentration of emotional information. If the stacking depth
of the temporal network is too deep, it will blur the already small
emotional transition features and pay more attention to all video frame
features. Due to the output features of the feature aggregation module
are concatenated with four parts representing different facial region
features, it is more reasonable to focus attention within the self region
features. Therefore, in the experiment, it is found that the performance
is significantly better when the number of attention heads is a multiple
of 4, such as 8 and 12, compared to other situations.

4.5. Visualization

In addition to the confusion matrix shown in the previous text, t-
SNE graphs are commonly used in classification tasks to display the
discrimination of each category. Fig. 9 shows the t-SNE plots of Former-
DFER, NR-DFER and our method on the DFEW datasets. Fig. 10 shows
10
Table 11
Comparative experiment of MSA module.

Num of heads DFEW WAR(%) AFEW WAR(%)

6 68.01 53.42
8 68.73 55.00
10 65.70 53.95
12 68.35 54.47

Table 12
Evaluation on different depth of transformer blocks.

Temporal layers DFEW WAR(%) AFEW WAR(%)

2 63.56 53.16
3 68.73 55.00
4 67.41 53.68
5 67.24 51.58
6 67.66 52.11

Fig. 8. Ablation Study on loss hyperparameter.

the t-SNE plots of our method on the AFEW, FERV39k and MAFW
datasets. Due to significant differences in data volume, we select the
first fold validation set of DFEW and MAFW, all samples in AFEW and
2000 samples randomly sampled from the FERV39k dataset.

The t-SNE diagrams of DFEW, AFEW and FERV39k show that the
model performs well in four categories: neutral, sad, efficient, and sur-
prised. It can effectively aggregate intra class samples, separate samples
from different categories, and mix the sample points of the other three
categories together. The t-SNE map of the 11 categories in MAFW has
a lower clustering degree than the dataset of the 7 categories, but
can still observe category boundaries of happiness, anxiety, sadness,
surprise, and helplessness. The above visualization results demonstrate
the excellent performance of our method in DFER tasks.

5. Conclusion

A new network for dynamic facial expression recognition (DFER) in-
the-wild is proposed in this paper, which is based on spatial key-points
optimized region feature fusion and temporal self-attention. The intra-
frame spatial expression information is extracted with a facial feature
extraction module and optimized by a key-points guided graph con-
volution module. A face structure-based spatial feature fusion module
is designed to fuse the spatial information. In the temporal feature
extraction network, a multi-headed self-attention network is used to
obtain the temporal information from inter-frames and generate the
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Fig. 9. Comparison of t-SNE on DFEW fold 1.
Fig. 10. t-SNE plots of three datasets.
final classification vector. Our method achieves competitive WAR of
55.00% on AFEW, 68.73% on DFER, 47.80% on FERV39k and 47.44%
on MAFW. Ablation experiments showed that the GCN module, fusion
module, and temporal module improved the accuracy on DFEW by
0.68%, 1.66%, and 3.25%, respectively, which strongly proves the
effectiveness of our modules. We also found that shallow temporal
network depth in DFER tasks is beneficial for the network to fully utilize
its performance. Our method also perform well in terms of parameter
quantity and inference speed, illustrating the effectiveness for DFER
in-the-wild.
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