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A B S T R A C T   

Background: Fusing the CNN and Transformer in the encoder has recently achieved outstanding performance in 
medical image segmentation. However, two obvious limitations require addressing: (1) The utilization of 
Transformer leads to heavy parameters, and its intricate structure demands ample data and resources for 
training, and (2) most previous research had predominantly focused on enhancing the performance of the feature 
encoder, with little emphasis placed on the design of the feature decoder. 
Methods: To this end, we propose a novel MLP-CNN based dual-path complementary (MC-DC) network for 
medical image segmentation, which replaces the complex Transformer with a cost-effective Multi-Layer Per-
ceptron (MLP). Specifically, a dual-path complementary (DPC) module is designed to effectively fuse multi-level 
features from MLP and CNN. To respectively reconstruct global and local information, the dual-path decoder is 
proposed which is mainly composed of cross-scale global feature fusion (CS-GF) module and cross-scale local 
feature fusion (CS-LF) module. Moreover, we leverage a simple and efficient segmentation mask feature fusion 
(SMFF) module to merge the segmentation outcomes generated by the dual-path decoder. 
Results: Comprehensive experiments were performed on three typical medical image segmentation tasks. For skin 
lesions segmentation, our MC-DC network achieved 91.69% Dice and 9.52mm ASSD on the ISIC2018 dataset. In 
addition, the 91.6% Dice and 94.4% Dice were respectively obtained on the Kvasir-SEG dataset and CVC- 
ClinicDB dataset for polyp segmentation. Moreover, we also conducted experiments on the private COVID- 
DS36 dataset for lung lesion segmentation. Our MC-DC has achieved 87.6% [87.1%, 88.1%], and 92.3% 
[91.8%, 92.7%] on ground-glass opacity, interstitial infiltration, and lung consolidation, respectively. 
Conclusions: The experimental results indicate that the proposed MC-DC network exhibits exceptional general-
ization capability and surpasses other state-of-the-art methods in higher results and lower computational 
complexity.   

1. Introduction 

Image segmentation plays a crucial role in medical image analysis, 
particularly in computer-aided diagnosis and image-guided clinical 
surgeries [1]. Over the past decade, there has been significant research 
and development in the field of segmentation, with a focus on devel-
oping efficient and robust segmentation methods. U-Net [2] and its 
variants [3–9] are landmark works that consist of an encoder (down-
sampling path) and a decoder (upsampling path) in a U-shaped archi-
tecture, connected by skip connections. The encoder can model deep 
semantic information. The decoder then restores the features to the 
original image size and generates pixel-level segmentation results 

through upsampling (deconvolution). Moreover, skip connections con-
nect the features from different levels of the encoder with the corre-
sponding levels of the feature map. These integral components enable 
UNet to capture features at various scales and levels in medical images, 
such as skin lesions, organs, and cells, facilitating effective segmentation 
of structures at different scales [10]. In this period, the studies all solely 
leverage convolution kernels to extract spatial features of images. 
Despite the notable success of convolutional kernels in detecting local 
details and edges in medical images, they still exhibit limitations in 
capturing broader global contextual information. 

Recently, Transformers [11] have leveraged self-attention to effi-
ciently and explicitly model rich global features in the field of natural 
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language processing (NLP). Inspired by that, several Transformer-based 
networks have been proposed to improve the performance of medical 
image segmentation. Swin-Unet [12] modifies the Swin Transformer 
block into an UNet. Furthermore, TransFuse [13], TransUNet [1] and 
MedT [14] make attempts to fuse Transformers and CNNs for enhancing 
the ability of medical segmentation. The Transformers encoder is 
employed to capture the long-range dependency, while the CNN encoder 
can focus on local spatial contextual information. 

Despite the advantages gained from combining CNN and Trans-
former, there are still a few limitations that need to be addressed. First, 
the heavy computational burden of the self-attention mechanism limits 
their practical application [15]. More recently, MLP-based architectures 
have attained competitive results with CNN and Transformer architec-
tures. For instance, AS-MLP [16] is the first MLP-based network to be 
employed in image segmentation, capturing long-range dependencies in 
the image with a series of MLP blocks. We demonstrate three different 
architectures and compare their parameters and computational 
complexity in Fig. 1. Note that computational complexity is measured by 
floating-point operations per second (FLOPs). Here, H and W represent 
the length and width of the feature maps, respectively. And, P stands for 
patch size. K is kernel size, and Ci stands for channel size of input and 
output features, where i ∈ {1, 2, 3}. The computational complexity of 
self-attention is proportional to the square of the number of patches HW

P2 , 
while the computational complexity of MLP is proportional to the square 
of the channel size Ci. Generally, the patch number is much larger than 
the channel size. The MLP-based method used a series of convenient 
MLP blocks to replace the self-attention mechanism which can reduce 
the heavy computational burden. Therefore, a novel MLP-CNN based 
dual-path complementary network (MC-DC) is proposed for medical 
image segmentation. To light the computational burden, we introduce 
the multi-layer perceptron (MLP)-based methods to replace the 
Transformer-based method, which can achieve competitive results 
compared to Transformer, without using a self-attention mechanism. 
Specially, we design a dual-path complementary (DPC) module to 
effectively fuse multi-level features from MLP and CNN. Functionally, 
the MLP-based path can capture long-range information, while the 
CNN-based path helps to provide refined features for the corresponding 
features from MLP. 

Second, most prior works solely focus on enhancing the performance 
of the feature encoder, with little emphasis placed on the design of the 
feature decoder. To integrate low-level features from the DPC module 
with high-level features learned by the encoder, we propose two feature 
fusion modules in the decoder stage. In detail, the designed cross-scale 
global feature fusion (CS-GF) module aims to rebuild global semantic 
information with the help of cross-scale attention. Meanwhile, the 

proposed cross-scale local feature fusion (CS-LF) module pays attention 
to reconstructing local spatial contextual information. Finally, we 
leverage a simple and efficient segmentation mask feature fusion (SMFF) 
module to combine the segmentation results of the dual-path decoder. 
The source codes have been uploaded at https://github.com/xiaoba 
imo/MC-DC for evaluation. 

To summarize, our main contributions can be outlined as follows:  

(1) We propose a novel MLP-CNN based dual-path complementary 
network for medical image segmentation, MC-DC. The CNN 
encoder can focus on local spatial contextual information. The 
MLP encoder is employed to capture the long-range dependency, 
without using a complex self-attention mechanism. 

(2) We design a dual-path complementary (DPC) module to effec-
tively fuse multi-level features from MLP and CNN, which can 
efficiently aggregate the complementary information.  

(3) The dual-path decoder is utilized to reconstruct global and local 
information, respectively. The cross-scale global feature fusion 
(CS-GF) module aims to rebuild global semantic information with 
the help of cross-scale attention, while the proposed cross-scale 
local feature fusion (CS-LF) module pays attention to recon-
structing local spatial contextual information. In addition, we 
leverage a simple and efficient segmentation mask feature fusion 
(SMFF) module to combine the segmentation results of the dual- 
path decoder.  

(4) Copious experiments were performed on three typical medical 
image segmentation tasks. The results demonstrate that the pro-
posed MC-DC network has exceptional generalization capabil-
ities, achieving higher results than other state-of-the-art methods 
while also exhibiting lower computational complexity. 

2. Related work 

2.1. U-Net and its variants for medical image segmentation 

U-Net [2] is a pioneering work in medical image segmentation, uti-
lizing a U-shaped architecture consisting of an encoder (downsampling 
path) and a decoder (upsampling path). The encoder is responsible for 
extracting high-level features from the medical image, while the decoder 
is used to map these features back to the original image size to generate 
the segmentation result. Specially, skip connections are utilized to 
connect each layer in the decoder to the corresponding layer in the 
encoder. This structure helps to preserve the details of the image and 
improves the accuracy of the segmentation. Inspired by that, many 
variants of U-Net are proposed to improve the performance of medical 
segmentation. For instance, UNet++ [3] is an extension of U-Net that 
incorporates a nested and dense skip pathway structure. It introduces a 
"deep supervision" mechanism, where the features generated by each 
skip layer are used to predict the segmentation mask at different scales. 
UNet3+ [4] is a further extension of Unet++, which introduces a 
multi-scale feature fusion module that fuses features from different 
scales to generate more comprehensive and diverse features. O-Net [17] 
is also based on U-Net, which is an architecture consisting of two con-
volutional autoencoders. Additionally, various attention-guided mech-
anisms have been designed to enhance the accuracy of segmenting 
objects of interest in medical images. Channel-Unet [7] incorporated 
spatial channel-wise convolution into the up-sampling and 
down-sampling modules, allowing for the extraction of mapping re-
lationships of spatial information between pixels. Rca-u-net [8] inte-
grated the U-Net architecture with residual channel attention blocks, 
thereby enhancing the network’s capability to prioritize informative 
features and yield superior quantification results. [9] adopted 
squeeze-and-excitation block [18] after concatenation of low-level and 
high-level features to effectively enhance channel attention. [19] pro-
posed a two-branch structure-guided segmentation network for 3D 
neuron reconstruction. Additionally, BAANet [20] incorporated both 

Fig. 1. Comparison of different architectures, along with their respective pa-
rameters and computational complexities. 
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channel attention and spatial attention into the U-Net architecture. 
Although U-Net and its variants are capable of achieving remarkable 

segmentation results in medical images, they are still constrained by 
their limited receptive field of convolution kernels, which limits their 
capacity to capture wider global contextual information. 

2.2. Transformer and CNN combined segmentation methods 

To leverage the strengths of both CNN and Transformer, TransUNet 
[1] employed CNNs to extract the initial features of medical images, and 
subsequently utilized Transformers to further process the extracted 
features. After that, the decoder upsampled the encoded features and 
merged them with the high-resolution CNN feature maps to achieve 
precise localization. TransFuse [13] is a parallel approach that combines 
Transformers and CNNs, enabling the efficient capture of both global 
dependencies and low-level spatial details. Specially, the BiFusion 
module is proposed to efficiently merge the multi-level features from 
both branches. [14] proposed a novel architecture called the gated 
axial-attention model (MedT), which adds an additional control 

mechanism to the self-attention in existing architectures. Yuan et al. 
[21] designed a CTC–Net for medical image segmentation which com-
bines ResNet34 [22] and Swin Transformer block [23]. Furthermore, the 
feature complementary module (FCM) is used for cross-wisely fusing 
features by a cross-domain fusion manner. These complementary models 
demonstrate significant advancements in medical segmentation 
compared to the pure CNN-based method. However, there are still a few 
limitations. First, self-attention mechanism presents a heavy computa-
tional burden that limits its practical application. Second, most prior 
works solely focus on designing the feature encoder, with little emphasis 
placed on the design of the feature decoder. 

2.3. MLP-based architectures 

More recently, MLP-based architectures have attained competitive 
results with CNN and Transformer architectures. Tolstikhin et al. [24] 
first presented the MLP-Mixer, which contains two types of MLP oper-
ation: mixing the per-location features and spatial information, respec-
tively. Following this work, other MLP-based architectures such as 

Fig. 2. Overview of the proposed MC-DC network, which is comprised of a dual-path encoder and a dual-path decoder. To achieve this, we employed Res2Net-50 and 
Wave-MLP as our dual-path encoder. In the decoder stage, the CS-GF module and CS-LF module are respectively designed to restore global and local information. 
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ResMLP [25] and gMLP [26] have been developed to further enhance 
performance. However, these architectures are dependent on image size 
and therefore may not be practical for tasks such as object detection and 
segmentation. To address this, AS-MLP [16] and CycleMLP [27] are 
proposed for dense prediction tasks, such as instance segmentation, and 
object detection. AS-MLP [16] designed an axial shift module to capture 
the information flow from different axial directions. CycleMLP [27] 
proposed a Cycle Fully-Connected Layer, which can deal with various 
image scales. In addition, Wave-MLP [28] transforms each token into a 
wave that possesses amplitude and phase, allowing for dynamic modu-
lation of the relationship between tokens and the fixed weights in MLP. 

To simultaneously leverage the advantages of CNN and MLP, we 
propose a novel dual-path complementary network. Furthermore, the 
DPC module is designed to effectively fuse multi-level features from MLP 
and CNN. In the decoder stage, we propose CS-GF and CS-LF to rebuild 
global semantic information and local spatial contextual information, 
respectively. Finally, we leverage a simple and efficient SMFF to 
combine the segmentation results of dual-path decoder. 

3. Method 

3.1. Architecture overview 

The proposed MC-DC network for medical image segmentation 
mainly consists of a dual-path encoder and a dual-path decoder, as 
shown in Fig. 2. Given the input image I ∈ RH×W×C, we employed a CNN- 
based model (Res2Net-50 [29]) to capture three pyramidal features 
Fi ∈ R

H
2i+1×

W
2i+1×Ci , where i ∈ {1, 2, 3} and Ci ∈ {64, 128, 320}. Meanwhile, 

an MLP-based model (Wave-MLP [28]) is utilized to extract Mi with the 
same scale. Then, the dual-path complementary (DPC) module is per-
formed to effectively fuse the same scale features from CNN and MLP, 

yielding the fused features FMi. After that, two trunk decoders gradually 
rebuild the high-level features FM3 to original resolution with the help of 
CS-GF module and CS-LF module. Finally, we leverage a simple and 
efficient SMFF module to combine the segmentation results of two 
decoders. 

3.2. Dual-path complementary module 

To effectively fuse multi-level features from CNN and MLP, we pro-
posed a Dual-path complementary (DPC) module, as shown in Fig. 3. 
First, global average pooling (GAP) followed by a 1D convolution with a 
kernel size of 5 is used as efficient channel-wished attention, computing 
as follows: 

ATTF = 1D − Conv(GAP(F)) (1) 

Then, the produced attention vector ATTF ∈ R1 × 1 ×c and ATTM ∈

R1 × 1 ×c are divided into n groups with length l, stood for GF ∈ Rn×l and 
GM ∈ Rn×l, where k is equal to 16. After that, a fused matrix R ∈ Rn×n is 
obtained through Eq. (2). 

R = GFGT
M (2) 

The modulation factor SF ∈ Rc and SM ∈ Rc can formally be attained 
as follows: 

S = Sigmoid(ATT + Linear(flatten(R))) (3) 

In addition, we utilized local attention (LA) to further enhance the 
expressiveness of local spatial contextual information of input feature 
maps F and M, gaining LF and LM. The core of LA is to use two 1 × 1 
convolution operations to interact with features among different chan-
nels, as shown in Eq. (4). 

Fig. 3. Illustration of the dual-path complementary (DPC) module. Blue and yellow feature maps are yielded by Res2Net-50 and Wave-MLP, respectively.  
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LF = BN(Conv(ReLu(BN(Conv(f ))))) (4) 

Finally, the fused feature maps FM is expressed as follows: 

FM = SM⋅LM + SF⋅LF (5)  

3.3. Dual-path decoder 

To respectively reconstruct global and local information, we 
designed a dual-path decoder that mainly consists of the cross-scale local 
feature fusion (CS-LF) module and the cross-scale global feature fusion 
(CS-GF) module. The details of the two modules are depicted in the blue 
and yellow blocks, as shown in Fig. 2. 

CS-LF module pays attention to reconstructing local spatial contex-
tual information. We first upsample the output features of the encoder 
via bilinear interpolation and obtain upsampled features L ∈ Rh ×w×c. 
Then, global average pooling (GAP) followed by a 1D convolution with a 
kernel size of 5 is used as efficient channel-wished attention and attains 
attention vector Att1 ∈ R1 × 1 ×c, which can be described as Eq. (6). 

Att1 = 1D − Conv(GAP(L)) (6) 

In addition, we introduce low-level features FM ∈ Rh ×w×c to com-
plement boundaries and spatial structure. Att2 is obtained through the 
same operation. After that, we add Att1with Att2 and expand to the 
original shape, yielding Att ∈ Rh ×w×c. Finally, the output of the CS-GF 
module can be produced by Eq. (7). 

L′ = Att⋅FM (7) 

CS-GF module is utilized to rebuild global semantic information. The 
kernel component of the CS-GF module is cross-scale attention (CSA), 
which is described in Fig. 4 in detail. The inputs of CSA are from 
upsampled feature G ∈ Rh ×w×c and low-level feature FM ∈ Rh ×w×c. 
First, feature G is reshaped to 2D tokens and passes through three linear 
projections, yielding Q ∈ Rhw×c, K ∈ Rhw×c, and V ∈ Rhw×c. Meanwhile, 

the FM performs the same operation and attains D ∈ Rhw×c. After con-
ducting two similarity comparisons, CSA is capable of establishing a 
strong and global correlation between high-level features and low-level 
features. The following equations can describe the calculation process. 

QD = Softmax
(
QDT
̅̅̅
d

√

)

(8)  

DK = Softmax
(
DKT
̅̅̅
d

√

)

(9)  

Y = QD× (DK×V) (10)  

3.4. Segmentation mask feature fusion module 

To effectively fuse the segmentation results from the dual-path 
decoder, we propose a segmentation mask feature fusion (SMFF) mod-
ule, the detailed structure is illustrated in Fig. 5. The inputs of the 
module are local feature maps LF ∈ Rh ×w×c yielded by CS-LF module 
and global feature maps GF ∈ Rh ×w×c produced by CS-GF module. We 
first directly add L with G, attaining mixed features GL ∈ Rh ×w×c. Then, 
the local attention and global attention are performed on the mixed 
features GL respectively, and then enhanced feature maps are added as a 
weighted attention map Att ∈ Rh ×w×c. This process can be expressed by 
Eq. (11). 

Att = Loc(GL) + Glob(GL) (11) 

Among them, Loc( ⋅ ) and Glob( ⋅ ) represent local attention operation 
and global attention operation respectively, which can be expressed as 
Eq. (12) and Eq. (13): 

Loc(GL) = BN(Conv(ReLU(BN(Conv(GL))))) (12)  

Glob(GL) = BN(Conv(ReLU(BN(Conv(GAP(GL)))))) (13) 

Fig. 4. The architecture of cross-scale attention (CSA).  
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where Conv is a convolution operation of 1 × 1, ReLU is an activation 
function, BN refers to a batch normalization operation, and GAP refers to 
a global average pooling. The core of local attention is to use two 1 × 1 
convolution operations to interact with features between different 
channels and enhance the expressiveness of local features. Global 
attention aims to extract global information from the network and 
enhance the expression ability of global features. Then, the weighted 
attention map Att is respectively multiplied by the global feature maps G 
and local feature maps L to increase the weight of important regions in 
the feature map. Finally, the enhanced dual-path features are added 
together as the output of the SMFF module. This process can be 
expressed by Eq. (14). 

P = Att⋅GF + Att⋅LF (14)  

3.5. Loss function 

The entire network uses a combination of intersection over union 
(IoU) loss and binary cross-entropy (BCE) loss for end-to-end training 
that can be described as follows: 

L = l IoU + l bce (15) 

Where, l IoU is IoU loss, l bce stands for BCE loss. The mixed loss 
employed in the training process can restrict the prediction map at both 
the object level and pixel level. Specially, deep supervision [30] is 
leveraged to enhance the gradient flow, particularly by providing 
additional supervision to the last fusion feature maps (FM3). Therefore, 
the final training loss is given in Eq. (16), 

L = αL (G,Proj(M1)) + βL (G,Proj(FM3)) + γL (G,Proj(P)) (16)  

where α = 0.2, β=0.3, and γ = 0.7 are weighted hyperparameters and G 
is groundtruth. Note that Proj is a segmentation head that can restore the 
feature maps to the groundtruth size. 

4. Experiments 

To assess the learning and generalization abilities of our MC-DC 
network, we performed experiments on three typical medical image 
segmentation tasks: skin lesions segmentation, polyp segmentation, and 
lung lesions segmentation. We first briefly provide a concise overview of 
all the datasets. Then, the implementation and evaluation are presented. 
In the end, we compare our results with other state-of-the-art (SOTA) 
methods that have been recently published and provide a comprehen-
sive analysis of the different components of our proposed method 
through detailed ablation studies. 

4.1. Datasets 

Skin lesions segmentation. We adopt ISIC 2018 dataset [31] for this 
task, which consists entirely of microscope RGB images, and the seg-
mentation labels are manually labeled by professional clinical doctors 
on the area of skin disease lesions. This dataset has already been offi-
cially divided into 2,594 for training and 100 for testing. In addition, the 
PH2 dataset [32], which consists of 200 images with skin lesions, is used 
as a supplementary test to verify the generalization of the model. Note 
that all images are consistently adjusted to 192 × 256. 

Polyp segmentation. We adopt two public polyp datasets including 
Kvasir-SEG [33] and CVC-ClinicDB [34] for this task. The Kvasir-SEG 
and CVC-ClinicDB dataset has been widely used in research on the 
detection and classification of gastrointestinal diseases, contributing to 
the development of new algorithms and techniques. Following [35], the 
Kvasir-SEG dataset is randomly assigned 880 images for training and 
120 for testing, while the CVC-ClinicDB dataset comprises 550 images 
for training and 62 for testing. Each image is resized into 256 × 256. 

Lung lesions segmentation. The COVID-DS36 dataset, jointly estab-
lished by our collaborating hospitals, is utilized in this task. The dataset 
consists of 4369 computed tomography (CT) images obtained from lung 
scans of 36 patients, of which 18 patients were diagnosed with COVID- 
19 infection and the remaining 18 were healthy individuals. As stated in 

Fig. 5. Segmentation mask feature fusion (SMFF) module.  
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[36,37], the clinical diagnosis proves that lung CT images exhibit 
evident imaging characteristics of COVID-19. 18 patients presented 
varying symptoms, and their CT images were annotated by medical 
professionals, revealing the presence of three diseases: ground-glass 
opacity (GGO), lung consolidation, and interstitial infiltration. We 
separated the data according to patients to avoid extreme similarity 
between the training and testing sets. In detail, the dataset is randomly 
assigned 28 patients (3,496 images) for training (80%), and 8 patients 
(873 images) for testing (20%), with an image size of 224 × 224. 

4.2. Implementation and evaluation 

Implementation details. We implemented our MC-DC network using 
Python 3.8 and PyTorch 1.7. All experiments were conducted on a PC 
equipped with an Intel(R) Core(TM) i9-10940X CPU and an Nvidia GTX 
3090 with 24GB of memory. Adam optimizer with a learning rate of 1e-5 
was utilized to update the parameters of networks, and the cosine 
schedule [38] was used for weight decay. The network was trained for 
100 epochs with a batch size of 8. Additionally, we employed random 
horizontal flips, random vertical flips, and random scale rotation shifts 
as data augmentation methods. Res2Net-50 [29] is adopted as the 
CNN-based encoder, while Wave-MLP [28] is utilized as the MLP-based 
encoder. Note that both models are initialized with pre-training weights 
from ImageNet-1k. 

Evaluation metrics. To evaluate the performance of our MC-DC 
network, we utilize two classification metrics (recall and precision) 
and four segmentation metrics which include average dice coefficient 
(Dice), average Intersection over Union (IoU), average Hausdorff dis-
tance (HD), and average symmetric surface distance (ASSD). The six 
metrics can be expressed as follows: 

Rec =
TP

TP+ FN
(17)  

Pre =
TP

TP+ FP
(18)  

Dice =
2(P ∩ G)
|P| + |G|

(19)  

IoU =
P ∩ G
P ∪ G

(20)  

HD = max
(

max
p∈P

{min
g∈G

‖ p − g ‖ },max
g∈G

{

min
p∈P

‖ g − p ‖

})

(21)  

ASSD =
1

|P| + |G|

(
∑

p∈P
min
g∈G

||p − g|| +
∑

g∈G
min
p∈P

||g − p||

)

(22)  

where TP, FN and FP stand for true positives, false negatives and false 
positives, respectively. P and G represent the predicted area and ground 
truth, respectively. Recall (Rec) measures the probability of not missing 
true positive cases, while precision (Pre) measures the probability of 
diagnosing true positive cases. Dice and IoU both measure of spatial 
overlap between the predicted masks and the ground truth. The higher 
score, the closer the prediction result is to the ground truth. Meanwhile, 
HD and ASSD are utilized for measuring the boundary surface distance 
between the predicted results and the ground truth. Note that predicted 
results and ground truth are closer with a lower score. 

4.3. Comparison with state-of-the-art methods 

4.3.1. Experiments on skin lesions segmentation 
To evaluate the skin lesions segmentation performance of our MC- 

DC, 16 recent SOAT models are used for comparison, including 7 pure 
CNN-based methods and 9 CNN-Transformer based methods. Table 1 
lists the results of comparative models and our MC-DC network on 

ISIC2018 measured by the Iou, Dice, ASSD, and HD. It can be observed 
that the CNN-based methods are unable to overcome the bottleneck 
caused by their limited capability to capture long-range dependencies. 
Meanwhile, most CNN-Transformer based methods outperform CNN- 
based methods, demonstrating the positive role of combining the CNN 
and Transformer. Compared with the original U-Net [2], BAT [39] can 
improve the IoU and Dice by 6.51% and 3.70%, respectively. Moreover, 
the proposed MC-DC network can achieve the SOTA results in all listed 
metrics (85.32% IoU, 91.69% Dice, 9.52mm ASSD and 24.73mm HD), 
which highlights the beneficial impact of integrating the MLP and CNN 
techniques and dual-path decoder. 

Fig. 6 illustrates the visual comparisons between the prediction re-
sults acquired from our MC-DC network and the compared methods. To 
enhance the visibility of the segmentation results in contrast to the 
lesion region edges, we transformed the segmentation results into 
translucent masks and fused them with the original image for better 
visualization. The first row demonstrates that our model can accurately 
detect lesions covered by the hair with the highest accuracy. The first 
and second rows prove that our MC-DC network possesses exceptional 
capabilities in capturing small-scale lesions. From the last two lines, it 
can be observed that our MC-DC network also can accurately detect the 
large-scale lesions. In summary, the proposed MC-DC network has su-
perior performance than other compared methods in handling complex 
cases with varying scales and blurred boundaries. 

To further verify the generalization performance of our MC-DC 
network, we utilized the PH2 dataset as a supplementary test set, 
which was not included in the training process. Fig . 7 illustrates the 
results between HD and Dice of our MC-DC network and the compared 
methods. Based on Fig. 7, our method achieves the highest Dice score 
and the lowest HD score, indicating that it produces predicted results 
that are closest to the ground truth for both the interior and edge of the 
lesion. Therefore, it can be demonstrated that our MC-DC network has 
good generalization and robustness. 

4.3.2. Experiments on polyp segmentation 
Table 2 lists the results of comparative models and our MC-DC 

network on Kvasir-SEG and CVC-ClinicDB datasets measured by the 
Dice, Iou, Rec, and Pre. As can be observed from the table, our MC-DC 
network outperforms the latest both CNN methods (i.e., HarDNet- 
MSEG [48] and EU-Net [49]) and CNN-Transformer based methods (i. 
e., DS-TransUnet [50] and CASF-Net [35]) in almost all metrics. In 
detail, our MC-DC network attains 91.6% Dice, 93.8% Rec, and 91.4 % 
Pre, improving by 0.2%, 0.2%, and 0.1% over the second place method 
(CASF-Net) on the Kvasir-SEG dataset. Again, the proposed MC-DC 
network achieves the best results (94.4% Dice) on CVC-ClinicDB 

Table 1 
Comparison with different SOTA models on ISIC2018. For each column, the best 
results are highlighted in bold.  

Model IoU (%)↑ Dice (%)↑ ASSD (mm)↓ HD (mm)↓ 

U-Net [2] 77.86 87.55 17.58 41.28 
U-Net++ [3] 78.31 87.83 17.27 42.75 
Attention U-Net [40] 78.43 87.91 16.79 41.90 
ResUNet [41] 78.60 86.20 - - 
DeepLabV3+ [42] 80.62 88.49 15.35 34.74 
CE-Net [43] 81.65 89.17 14.76 31.01 
CA-Net [44] 82.73 89.31 14.82 32.47 

Swin U-Net [12] 83.46 90.78 10.88 28.60 
MedT [14] 81.78 87.92 15.27 32.40 
TransFuse [13] 80.63 89.27 12.40 28.37 
FAT-Net [45] 82.02 89.03 - - 
TransUNet [1] 82.20 89.40 13.17 32.05 
TransNorm [46] 84.40 90.87 11.46 27.08 
CASF-Net [35] 84.1 90.8 - - 
SwinPA-Net [47] 85.4 91.1 - - 
BAT [39] 84.37 91.25 9.92 27.69 
MC-DC (ours) 85.32 91.69 9.52 24.73  

X. Jiang et al.                                                                                                                                                                                                                                    



Computer Methods and Programs in Biomedicine 242 (2023) 107846

8

datasets. 
Furthermore, we illustrate the visual comparisons of polyp segmen-

tation between the prediction results obtained from our MC-DC network 
and the compared methods on Fig. 8. The first and the second column 
represent the original polyp images and the ground truth, respectively. 
The qualitative segmentation results of the proposed MC-DC network 
and the comparison networks are illustrated as follows. The predicted 
masks generated by our MC-DC network outperform other models as it 
closely resembles the boundary and shape of the ground truths. 

4.3.3. Experiments on lung lesion segmentation 
As shown in Table Table 3, we employed five CCN methods (U-Net 

[2], UNet++ [3], EU-Net [49], PSPNet [52] and SegNet [53]) and four 
CNN-Transformer based methods (TransFuse [13], TransUNet [1], 
Swin-Unet [12] and CASF-Net [35]) as the comparison networks to 
evaluate the performance on lung lesion segmentation. Here, the 
COVID-DS36 dataset is partitioned into five equal parts and the 5-fold 
cross-validation is employed to develop a more generalized model. 
Note that the quantitative data were presented as values [95% confi-
dence interval]. The classical U-Net achieves 76.1% [69.2%, 83.1%] 
Dice, 82.3% [76.3%, 88.4%] Dice, and 80.64% [77.2%, 84.0%] Dice on 
GGO, interstitial infiltrates, and lung consolidation, respectively. In 
addition, we find that UNet++ can obviously improve the Dice metric of 
the three lesion types by 10.9%, 8.7% and 10.0%, respectively. How-
ever, the Rec metrics obtained by UNet++ show a slight decrease. The 
same issue has also been observed in EU-Net, PSPNet, and SegNet. On 
the contrary, TransUNet, Swin-Unet, and CASF-Net have improved both 
the Dice and Rec metrics. The Dices obtained by Swin-Unet are 86.9% 
[86.1%, 87.7%], 91.1% [90.6%, 91.6%] and 91.7% [91.3%, 92.1%] on 
the three lesion types, respectively. Meanwhile, the Recs are 94.5% 
[93.9%, 94.9%], 97.0% [96.6%, 97.4%], 96.4% [96.1%, 96.7%]. Based 
on Table 3, it is clear that the proposed MC-DC network outperforms all 
comparative networks in almost all metrics, with Dice scores of 87.6%, 
92.3%, and 92.3%, and Recall scores of 96.4%, 97.6%, and 97.1%. 

In addition, we also illustrate the average Dice of three lesion types 
using box plot on Fig. 9. From that, we can clearly find that our MC-DC 
can achieve the highest average dice, and the strongest model robustness 
due to its most concentrated data distribution. Specially, we still use 
paired t-test for statistical significance testing and report the P-values. In 
general, a resulting p-value below 0.05 is considered acceptable. It is 

Fig. 6. Comparison of visual skin lesions segmentation results. The first and second column stand for the original image and ground truth, respectively. (c)-(h) 
recovered results from U-Net++, DeepLabV3+, CE-Net, TransFuse, TransUNet, and our MC-DC, respectively. 

Fig. 7. Generalizability results using PH2 dataset. The X-axis represents the 
intervals of Dice, and the Y-axis stands for the intervals of HD. Our MC-DC 
network is represented by green circles. 

Table 2 
Comparison with different SOTA models on polyp segmentation. For each column, the best results are highlighted in bold.  

Method Kvasir-SEG CVC-ClinicDB 

Dice (%)↑ IoU (%) ↑ Rec (%) ↑ Pre (%) ↑ Dice (%)↑ IoU (%) ↑ Rec (%) ↑ Pre (%) ↑ 

U-Net [2] 74.8 64.0 82.1 76.3 77.9 69.6 78.9 80.2 
DoubleU-Net [51] 81.3 73.3 84.0 86.1 92.4 86.1 84.6 90.7 
HarDNet-MSEG [48] 90.4 84.8 92.3 90.7 92.4 86.1 90.0 92.0 
EU-Net [49] 90.8 85.4 93.4 90.9 90.2 84.6 90.6 87.8 

TransUNet [1] 89.8 86.3 91.2 91.3 92.3 86.9 94.2 91.7 
Swin-Unet [12] 89.0 82.5 90.6 90.6 90.6 84.9 91.8 90.7 
DS-TransUnet [50] 91.3 85.9 93.6 91.6 94.2 89.4 95.0 93.7 
CASF-Net [35] 91.4 87.1 93.6 91.3 93.4 89.9 95.2 94.2 
MC-DC (ours) 91.6 86.7 93.8 91.4 94.4 90.0 95.2 94.1  
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evident that all outcomes are below 0.05 on COVID-DS36 dataset, thus 
validating the statistical significance of our results. Specially, the visual 
comparisons of lung lesion segmentation are shown in Fig. 10. We use 
white dashed circles to indicate the improved segmentation perfor-
mance of the proposed MC-DC network. For instance, the last sample has 

three lesion types and the segmentation areas are relatively discrete. The 
prediction results yielded by the proposed MC-DC network are more 
closely aligned with the ground truths and exhibit superior segmenta-
tion capabilities in complex lesion areas when compared to other 
networks. 

4.4. Ablation studies 

In this section, we design comprehensive ablation studies to assess 
the effectiveness of each component in MC-DC network. The proposed 
MC-DC network is composed of dual-path encoder and decoder. Hence, 
we first design various combinations of encoder and decoder and 
conduct experiments on ISIC2018 dataset. As listed in Table 4, “CNN” is 
a CNN-based model (Res2Net-50), and “MLP” is an MLP-based model 
(Wave-MLP). “CS-GF” stands for global reconstruction decoder, while 
“CS-LF” represents local reconstruction decoder. From the first and 
second lines, it can be inferred that there is a significant performance 
gap when solely using CNN as the decoder. The Dice decreases by 1.14% 
dice and the ASSD increases by 2.45%. Then, it can be observed that 
MLP-based encoder can improve the results, benefitting from the ability 

Fig. 8. Comparison of visual polyp segmentation results. The first and second column stand for the original image and ground truth, respectively. (c)-(g) recovered 
results from U-Net, HarDNet-MSEG, CASF-Net, and our MC-DC, respectively. 

Table 3 
Comparison with different SOTA models on lung lesion segmentation. For each 
column, the best results are highlighted in bold.  

Method GGO Interstitial 
Infiltrates 

Consolidation 

Dice 
(%)↑ 

Rec 
(%)↑ 

Dice 
(%)↑ 

Rec 
(%)↑ 

Dice 
(%)↑ 

Rec 
(%)↑ 

U-Net [2] 76.1 
[69.2, 
83.1] 

94.8 
[94.1, 
95.5] 

82.3 
[76.3, 
88.4] 

97.2 
[96.8, 
97.6] 

80.6 
[77.2, 
84.0] 

96.3 
[96.0, 
96.5] 

UNet++

[3] 
87.0 
[86.3, 
87.7] 

93.9 
[93.1, 
94.6] 

91.0 
[90.3, 
91.7] 

95.9 
[95.5, 
96.4] 

90.6 
[88.5, 
92.7] 

95.6 
[95.3, 
95.9] 

EU-Net  
[49] 

83.4 
[83.0, 
83.8] 

93.2 
[92.7, 
93.7] 

90.5 
[90.1, 
90.9] 

95.3 
[94.8, 
95.8] 

90.2 
[89.7, 
90.7] 

95.5 
[95.0, 
96.0] 

PSPNet  
[52] 

84.1 
[83.6, 
84.6] 

90.6 
[90.0, 
91.2] 

89.7 
[89.2, 
90.2] 

95.0 
[94.0, 
95.9] 

90.5 
[89.9, 
91.1] 

94.0 
[93.4, 
94.4] 

SegNet  
[53] 

83.8 
[82.5, 
85.1] 

93.6 
[92.5, 
94.7] 

91.6 
[91.1, 
92.1] 

96.2 
[95.9, 
96.5] 

89.7 
[89.3, 
90.1] 

96.0 
[95.7, 
96.3] 

TransFuse  
[13] 

83.3 
[82.4, 
84.2] 

93.3 
[92.5, 
94.1] 

88.0 
[87.5, 
88.5] 

95.0 
[94.2, 
95.8] 

89.4 
[88.6, 
90.2] 

95.0 
[94.3, 
95.7] 

TransUNet  
[1] 

86.0 
[86.1, 
87.7] 

95.0 
[94.5, 
95.5] 

91.1 
[90.7, 
91.5] 

96.7 
[96.2, 
97.2] 

90.4 
[90.0, 
90.8] 

96.6 
[96.1, 
97.1] 

Swin-Unet  
[12] 

86.9 
[86.1, 
87.7] 

94.5 
[93.9, 
94.9] 

91.1 
[90.6, 
91.6] 

97.0 
[96.6, 
97.4] 

91.7 
[91.3, 
92.1] 

96.4 
[96.1, 
96.7] 

CASF-Net  
[35] 

85.5 
[85.0, 
86.0] 

94.5 
[94.1, 
94.9] 

89.9 
[89.5, 
90.3] 

96.3 
[95.9, 
96.7] 

91.1 
[90.7, 
91.4] 

96.7 
[96.2, 
97.2] 

MC-DC 
(ours) 

87.6 
[87.1, 
88.1] 

96.4 
[96.0, 
96.7] 

92.3 
[92.1, 
92.6] 

97.6 
[97.2, 
98.0] 

92.3 
[91.8, 
92.7] 

97.1 
[96.8, 
97.4]  

Fig. 9. Box plot of average Dice produced by different models. We also use 
paired t-test for statistical significance testing and illustrate the P-values. 
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to capture the global information. Moreover, MLP-CNN based dual-path 
encoder exhibits outstanding performance in medical image segmenta-
tion which can focus on both local spatial contextual information and 
long-range dependency. Furthermore, the decoder is also crucial. Our 
MC-DC network can surpass all variant networks when employing both 
local and global reconstruction decoder. 

In addition, we also investigate the impact of the proposed dual-path 
complementary (DPC) module and segmentation mask feature fusion 
(SMFF) on COVID-DS36 dataset. The results are shown in Table 5. We 
first remove the SMFF module and directly add the two feature maps 
from two decoders. The average Dice decreases by 0.6% and the average 
Rec decreases by 0.8. Meanwhile, the Dice decreases by 0.9% without 

DPC. Specially, the average Dice and average Rec respectively decrease 
by 1.5% and 1.6% when removing both DPC and SMFF. It can be 
observed that our DPC and SMFF can efficiently aggregate the comple-
mentary information. 

4.5. Visualization of feature maps from dual-path encoder and decoder 

In this section, we will comprehensively investigate the qualitative 
results of dual-path encoder and decoder. As shown in Fig. 11, we 
visualize feature maps generated by encoder (purple block) and decoder 
(green block) on three cases of COVID-DS36 dataset. Note that the lower 
response is demonstrated in blue while the higher are highlighted in red 
which can highlight areas of interest or concern. For the encoder, we 
first list the feature map F3 and feature map M3 generated by CNN 
branch and MLP branch, respectively. The details can be seen in Fig. 11 
(b) and Fig. 11 (c). From feature map F3, we can observe that the red 
areas are relatively small, indicating that the CNN is specifically atten-
tive to local spatial contextual information. From the feature map M3, it 
is evident that the red areas are significantly larger, implying that the 
MLP is capable of capturing long-range dependencies. However, it is 
worth noting that the majority of the areas of concern do not correspond 
to lung lesions. Furthermore, we also show the fused feature map FM3 in 
Fig. 11 (d). We found that the red areas are more concentrated in lung 
lesions. It is evident that the proposed Dual-Path Complementary (DPC) 
module can accurately combine lung lesion information from the CNN 
and MLP branches. 

For the decoder, we first list the feature map LF and feature map GF 
reconstructed by CS-LF module and CS-GF module, respectively. From 
Fig. 11 (f) and Fig. 11 (g), we can find that the proposed CS-LF module 
aims to reconstruct local spatial contextual information, while the 
designed CS-GF focuses on rebuilding global semantic information. 
Specially, we further visualize the feature map P that combines the 
output of the two branches which are more similar to the ground truths. 
The results prove the effectiveness of the SMFF module to combine the 
segmentation results of the dual-path decoder. 

Fig. 10. Comparison of visual lung lesion segmentation results. The first and second column stand for the original image and ground truth, respectively. (c)-(I) 
recovered results from U-Net, PSPNet, SegNet, TransFuse, Swin-Unet, CASF-Net, and our MC-DC, respectively. The three color markers represent the three lesions, 
with green indicating ground-glass opacity (GGO), yellow indicating interstitial infiltration, and red indicating lung consolidation. 

Table 4 
Ablation studies on various combinations of encoder and decoder using 
ISIC2018 dataset.  

Encoder Decoder Dice (%)↑ ASSD (mm) ↓ 

CNN MLP CS-GF CS-LF 

√  √  90.55 11.97 
√   √ 90.29 12.38  

√ √  91.08 11.27  
√  √ 90.83 11.57 

√ √ √  91.38 10.46 
√ √  √ 91.29 10.73 
√ √ √ √ 91.69 9.52  

Table 5 
Ablation studies on feature fusion modules using COVID-DS36 dataset. The “w/ 
o” stands for “without”.  

Methods Average Dice (%)↑ Average Rec (%)↑ 

w/o SMFF 90.1 [89.8, 90.4] 96.2 [95.8, 96.5] 
w/o DPC 89.8 [89.5, 90.1] 95.9 [95.6, 96.2] 
w/o (DPC+SMFF) 89.2 [88.8, 89.6] 95.4 [95.1, 95.7] 
DPC+SMFF 90.7 [90.5, 90.9] 97.0 [96.9, 97.1]  
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4.6. Comparison of inference efficiency 

To assess the inference efficiency, we calculate the parameters and 
computational complexity of our MC-DC network and its variants on 
ISIC 2018 dataset. Here, we replace the MLP branch with the Trans-
former branch (PVTv2-B2 [54] and PVTv2-B3 [54]) in the encoder 
which we name as "Variant 1" and "Variant 2", respectively. In addition, 
we also list the inference efficiency of three SOTA methods: ResUNet 
[41], TransUNet [1], and BAT [39]. The results are shown in Table 6. 
Note that floating-point operations per second (FLOPs) are utilized to 
measure computational complexity. Based on Table 6, we can obtain the 
following observations: 1) ResUNet [41] has the highest Flops but the 
lowest Dice score. 2) TransUNet [1] has the highest number of param-
eters but a lower Dice score compared to our MC-DC. Meanwhile, BAT 
[39] has a lower number of parameters and Dice scores than our MC-DC. 
3) Our MC-DC network has lower Flops compared with the “Variant 1” 
which has almost the same parameters. In addition, our MC-DC network 
can improve by 0.31% Dice over "Variant 2" which has higher 
parameters. 

It proves that the MLP-based method used a series of convenient MLP 
blocks to replace the self-attention mechanism which can reduce the 

heavy computational burden and improve performance compared to 
other SOTA methods. 

5. Discussion 

Recently, Transformers have leveraged self-attention to efficiently 
and explicitly model rich global features in the field of natural language 
processing (NLP). Hence, How to adapt Transformer architecture into 
medical segmentation has garnered increasing attention. Among that, 
the fusion of the CNN and Transformer in the encoder has achieved 

Fig. 11. Visualization of feature maps generated by an encoder (purple block) and decoder (green block) on three cases of COVID-DS36 dataset.  

Table 6 
Comparison of model efficiency on ISIC dataset. Note that the inputs are set to 
192 × 256.  

Method Params (M) Flops (G) Dice (%) 

ResUNet [41] 62.74 94.56 86.20 
TransUNet [1] 105.32 38.52 88.91 
BAT [39] 46.23 44.98 91.20 
Variant 1 62.60 42.15 91.12 
Variant 2 78.48 45.21 91.38 
MC-DC (Ours) 65.93 41.13 91.69  
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remarkable performance. However, there are obvious limitations to such 
models that require addressing. First, the utilization of Transformer 
leads to heavy parameters, and its intricate structure demands ample 
data and resources for training. Second, most previous research had 
predominantly focused on improving the performance of the feature 
encoder, with little emphasis placed on the design of the feature 
decoder. To address these issues, we propose a novel MLP-CNN based 
dual-path complementary (MC-DC) network for medical image seg-
mentation. After conducting sufficient experiments, we make detailed 
discussions as follows: 

(1) As can be observed from Fig. 11, we can find that MLP archi-
tecture can also capture the global features in medical images. 
Furthermore, MLP architecture is simpler and more efficient 
rather than complex Transformer architecture. The quantitative 
comparison is also listed in Table 6.  

(2) Extensive experiments were conducted on three typical medical 
image segmentation tasks. For skin lesions segmentation, our MC- 
DC network has superior performance than other compared 
methods in handling complex cases with different scales and 
blurred boundaries. From Table 2 and Fig. 8, we can find that the 
proposed MC-DC network has achieved the highest Dice 91.6% 
on Kvasir-SEG, and 94.4% Dice on CVC-ClinicDB datasets. Lung 
lesion segmentation is a multi-class segmentation task. Based on 
Fig. 10, the prediction results yielded by the proposed MC-DC 
network are more closely aligned with the ground truths and 
exhibit superior segmentation capabilities in complex lesion 
areas when compared to other networks. 

(3) We design comprehensive ablation studies to assess the effec-
tiveness of each component in MC-DC network. Based on Table 4, 
we find that the dual-path encoder and the dual-path decoder can 
achieve the best result. Table 5 proves the effectiveness of the 
SMFF module and DPC module. Furthermore, the visualization of 
feature maps generated by encoder and decoder more intuitively 
illustrates the reasonableness of the designed components. 

Despite the promising clinical prospects of our MC-DC net-
work’s segmentation advantages, there are still some remaining 
shortcomings. First, the parameters of the networks needed to be 
further reduced. Second, the model also requires a large amount 
of data to enhance robustness. In the future, we will continue to 
investigate and develop more lightweight and efficient networks 
for medical image segmentation. 

6. Conclusion 

In this study, a novel MLP-CNN based dual-path complementary 
(MC-DC) network is proposed for medical image segmentation. It re-
places the complex Transformer with cost-effective MLP. And, the dual- 
path decoder is designed to respectively reconstruct global and local 
information with the help of CS-GF module and CS-LF module. Specif-
ically, the DPC module is proposed to effectively fuse multi-level fea-
tures from MLP and CNN, and the SMFF module is leveraged to merge 
the segmentation outcomes generated by the dual-path decoder. We 
performed copious experiments on three typical medical image seg-
mentation tasks. The results show that our MC-DC network achieves 
better segmentation performance and lower computational complexity 
compared with the state-of-the-art segmentation network. Furthermore, 
the visualization of feature maps generated by encoder and decoder 
more intuitively illustrates the reasonableness of the designed 
components. 
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