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A B S T R A C T   

Manually and accurately detecting thoracic diseases from CXR images is a time-consuming task that requires 
experienced radiologists. Therefore, automated thoracic diseases classification has great significance. However, 
most existing methods solely leverage the feature maps extracted from CXR images to classify thoracic diseases, 
without effectively connecting the correlation between the local discriminative lesion features and their corre
sponding labels. To address this issue, we innovatively introduce a learnable label embedding as queries to detect 
and match class-related features from the feature maps, and then processed by a novel Transformer-based dual- 
path decoder (TransDD) to facilitate interaction. The proposed TransDD is comprised of three key components: 
spatial reduction attention (SRA), dual-path attention (DPA), and feature enhancement module (FEM). SRA is 
employed in simplifying the complexity of self-attention, while DPA is specifically designed to connect the 
explicit correlation between the features and labels. Moreover, FEM is used to boost the expressiveness of local 
features. Subsequently, the classification attention block is utilized to balance two classification scores based on 
the feature output and label output, respectively. The proposed TransDD-PVT attained SOTA performance on the 
ChestX-ray14 dataset, achieving a mean area under the receiver operating characteristic (AUC) of 83.1% across 
all 14 classes. Also, our method achieves 94.31% accuracy and 93.31% sensitivity on three-class classifications. 
Extensive experiments conducted on several datasets demonstrate the powerful ability of our TransDD to 
improve the performance of thoracic diseases classification. It can serve as a plug-and-play structure to improve 
the classification performance of both CNNs and recent Transformer-based backbones.   

1. Introduction 

Thoracic diseases are serious health problems in the lives of people 
[1]. The Chest X-ray (CXR) is a diagnostic examination that is painless 
and non-invasive, and it has gained widespread usage in screening 
various thoracic diseases [2,3]. During the devastating COVID-19 
epidemic that has caused serious health and economic consequences, 
CXR has played a crucial role in assisting clinical diagnosis [4,5]. 
However, CXR images are almost analyzed through radiologists’ visual 
inspection which requires a high degree of skills and concentration. In 
contrast, many countries lack experienced radiologists who can read 
CXR images accurately [6]. Hence, an automated computer-aided 
diagnosis (CAD) of thoracic diseases is of great significance. Recog
nizing its significance, Wang et al. [7] first constructed the ChestX-ray14 

dataset to evaluate the automated algorithms for CAD of thoracic dis
eases. After that, [8] designed a deep-learning pipeline for the diagnosis 
of pneumonia, and also constructed a CXR dataset (CC-CXRI) which is 
the largest multi-clinical scene CXR images dataset around the world. 

With the continuous development of deep convolutional neural 
networks (DCNN) [9–11], researchers can mine available information 
from large-scale medical data. Benefiting from two large CXR datasets 
[7,8], various CNN-based methods [1,3,11–16] were employed for the 
diagnosis of thoracic diseases. However, most prior works remain some 
faultinesses. The main challenges in the field of thoracic diseases clas
sification are common as follows: (1) As shown in Fig. 1(a)-(c), the lesion 
regions of thoracic diseases could have obvious scale variance and 
different locations of the lung field. The region of effusion in Fig. 1(a) is 
much smaller than in Fig. 1(c). (2) Multi-label diseases may appear in a 
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single CXR image. For instance, there are Effusion, Infiltrate, and Mass in 
Fig. 1(b). (3) The existing research works lack the ability to compre
hensively capture global lesion information. Moreover, most works 
solely leverage the feature maps extracted from CXR images to classify 
thoracic diseases, without effectively connecting the correlation be
tween the local discriminative lesion features and corresponding labels. 

Recently, the success of Transformer [17] in image classification 
[18–20] has been impressive. The ability to capture the information of 
the global image through the self-attention mechanism is one of the keys 
to success [21]. In addition, another advantage of the Transformer is its 
cross-attention mechanism, which can establish cross-modal connec
tions. Motivated by the nomenclature used in Transformer, we introduce 
a learnable label embedding as queries to detect and match class-related 
features from the feature maps that are set as key and value. A novel 
Transformer-based dual-path decoder (TransDD) framework that can 
address the above challenges is comprised of the feature decoder and 
label decoder. In detail, there are three key components: spatial reduc
tion attention (SRA), dual-path attention (DPA), and feature enhance
ment module (FEM). By simulating self-attention, our SRA can capture 
variances in appearance, location, and scale of the lesion regions in CXR 
images. Meanwhile, our SRA can reduce the complexity of the global 
self-attention. Moreover, the DPA can establish the connection between 
local discriminative features and the corresponding label. In addition, a 
FEM is employed to boost the expressiveness of local features. After that, 
we also designed a classification attention block to balance two classi
fication scores based on feature output and label output, respectively. 
Note that our TransDD can serve as a plug-and-play structure to improve 
the performance of both CNNs (ie., EffNet [22], ResNet [14], and Den
seNet [15]) and recent Transformer-based backbones (ie., ViT [18], PVT 
[19], and Swin Transformer [20]). To evaluate the effectiveness of our 
TransDD, extensive experiments were conducted on two tasks, multi- 
label and multi-class thoracic diseases classification. Compared with 
the state-of-the-art baselines, sufficient results demonstrated that the 
proposed TransDD has the remarkable capability to promote thoracic 
diseases classification. The main contributions of this paper are sum
marized as follows: 

1. To connect the correlation between the local discriminative lesion 
features and the corresponding labels of thoracic diseases, we innova
tively introduce a learnable label embedding as queries to detect and 
match class-related features from the feature maps. 

2. We propose a novel Transformer-based dual-path decoder 
(TransDD), which is comprised of the feature decoder and label decoder. 
In detail, there are three key components: spatial reduction attention, 
dual-path attention, and feature enhancement module. Our TransDD can 
serve as a plug-and-play structure to enhance the classification perfor
mance of both CNNs and recent Transformer-based backbones. 

3. After that, classification attention is designed to balance two 

classification scores based on feature output and label output 
4. We verify the effectiveness of our TransDD with comprehensive 

experiments on the multi-label and multi-class classification of thoracic 
diseases. Sufficient experiments demonstrate that our proposed TransDD 
framework can bring a significant boost on the comparative backbone 
for thoracic diseases classification. 

2. Related work 

2.1. Cnn-based computer-aided diagnosis of thoracic diseases 

With the continuous development and progress of medical image 
processing, more and more medical images need to be interpreted by 
doctors, which has gradually become a hot topic and challenge [23]. 
Doctors may have interpretation errors due to inexperience or fatigue, 
which are prone to false positive and false negative results [24]. In this 
situation, the emergence of computer-aided diagnosis (CAD) has finally 
become the demand of the times, which can significantly enhance the 
precision of diagnosis and offer efficient decision-making aid to physi
cians. CXR is an overlapping image of the human structure, which makes 
it easy to cover up local lesions and causes misdiagnosis. Hence, CAD in 
CXR images is widely employed for thoracic diseases [25]. To improve 
the performance of thoracic disease classification, many researchers 
employed various algorithms based on DCNNs. Wang et al. [7] 
compared several classic CNN architectures (i.e., AlexNet [11], VGGNet 
[12], GoogLeNet [13], and ResNet [14]) for the diagnosis of 14 thoracic 
diseases. [8] and [26] fine-tuned a DenseNet-121 [15] model for the 
CXR image classification on the CC-CXRI dataset and ChestX-ray14 
dataset, respectively. Inspired by the attention mechanism that has 
been widely utilized in the realm of computer vision (CV), Guan et al. 
[16] proposed a highly adaptive category-wise residual attention mod
ule that can easily be incorporated into any feature embedding network, 
allowing for seamless end-to-end multi-label CXR image classification 
training. [1] designed a triple-attention learning (A3 Net) model, which 
contains channel-wise, element-wise, and scale-wise attention learning 
for CAD of thoracic diseases. Thorax-net [27] consists of an attention 
branch that exploits the correlation between the locations of patholog
ical abnormalities and class labels via analyzing the feature maps. In 
addition, Chen et al. [3] introduced a groundbreaking framework called 
Semantic Similarity Graph Embedding (SSGE), which meticulously in
vestigates the semantic similarities existing within images to enhance 
the visual feature embedding. [28] presents an optimized ensemble 
framework for solving multi-label classification on long-tailed chest X- 
ray data. Jin et al. [29] proposed a new dual-weighted metric loss 
function for multi-label chest X-ray images. However, these methods 
could not capture variances in appearance, location, and scale of the 
lesion regions in CXR images, and failed to consider the connection 

Fig. 1. Three CXR images from ChestX-ray14 with lesion regions labeled on the ground truth. Red, green, and blue bounding boxes represent effusion, infiltrate, and 
mass, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

X. Jiang et al.                                                                                                                                                                                                                                    



Biomedical Signal Processing and Control 91 (2024) 105937

3

between local discriminative diseased features and the corresponding 
label of thoracic diseases. 

2.2. Transformer in image classification 

Transformer [17] was first proposed for natural language processing 
(NLP) tasks [30–32] which had achieved state-of-the-art performance. 
Inspired by the achievements of the Transformer in the field of natural 
language processing (NLP), several researchers [18–21] pursued the 
integration of the Transformer into the realm of computer vision (CV). 
Vision Transformers (ViT) was first proposed in [18]. An image was split 
into non-overlapping static image patches as tokens and then fed into a 
stacked Transformer architecture for classification. However, the 
drawback of ViT is its reliance on extensive training datasets like JFT- 
300 M, containing 300 M images, despite its remarkable accuracy. 
Hence, Wang et al. [19] presented a Pyramid Vision Transformer (PVT) 
that can reduce the resolution of feature maps by incorporating the 
pyramid structure from CNN. Liu et al. [20] proposed a new vision Swin 
Transformer which produces a hierarchical feature representation with 
a linear computational complexity. Yang et al. [21] proposed a focal 
Transformer that applied either coarse-grained global attention or fine- 
grained local attention to reduce the memory cost. In addition, Jamali 
et al. [33] proposed a local window attention transformer and Zhao et al. 
[34] designed a multi-attention Transformer for image classification. 
The self-attention and decoder mechanism are the keys to success. 
Inspired by that, we propose a novel Transformer-based dual-path 
decoder (TransDD) framework for thoracic diseases classification. 

3. Materials and method 

3.1. 3.1 Datasets 

Multi-label and multi-class classification are two common tasks in 
thoracic diseases classification. In multi-label classification, each input 
can have multi-output classes, while each input will have only one 
output class in multi-class classification. We extensively validate our 
proposed TransDD framework on both multi-label and multi-class clas
sification of thoracic diseases. 

Multi-label classification of thoracic diseases. The ChestX-ray14 

dataset (ChestX-ray14) [7] published by the NIH, is widely regarded 
as the most commonly utilized benchmark in the field of automatic 
multi-label CXR image analysis. It consists of 112,120 frontal-view CXR 
images obtained from 30,805 individual patients, and each image is 
labeled for up to 14 diseases or “No Finding”. In addition, China Con
sortium of Chest X-ray Image Investigation also constructed large CXR 
datasets. First, Sun Yat-sen University (SYSU) dataset [8] (including 
120,012 CXR images) consists of patients from hospital visits. SYSU-PE 
[8] (including 42,402 CXR images) is another dataset containing addi
tional patients who underwent a routine annual physician examination 
for external validation. 

Multi-class classification of thoracic diseases. Wang et al. [8] also 
released another dataset (CC-CXRI-P), consisting of 7,921 CXR images 
for detecting viral pneumonia (including COVID-19 pneumonia), other 
types of pneumonia, and normal controls. 

On the whole, we employed the ChestX-ray14, SYSU, and SYSU-PE 
datasets for multi-label classification of thoracic diseases, while utiliz
ing the CC-CXRI-P dataset for multi-class classification. 

3.2. Framework 

The overall framework for thoracic diseases classification is depicted 
in Fig. 2. Given an input CXR image X with a set of categories of thoracic 
diseases, our framework can predict whether each pathology is present. 
Before performing SRA and DPA, we need to reshape the feature maps 
X ∈ Rh×w×d extracted by the backbone into a sequence of flattened 2D 
patches F ∈ Rhw×d. Here, h, w, and d represent the length, width, and 
dimension of the feature map. And, hw means the number of patches is 
(h× w). The backbone could be recently developed Vision Transformer 
backbones (ie., ViT [18], PVT [19], Swin Transformer [20]) or classical 
CNN backbones (ie., ResNet [14], DenseNet [15]). Meanwhile, we 
innovatively introduce a randomly initialized two-dimensional matrix 
L ∈ RN×d as a learnable label embedding, where N is the number of 
categories. Then we sent the label embedding L to our TransDD to detect 
and match class-related features from the feature F. The proposed 
TransDD can efficiently establish the connection between local 
discriminative diseased features and the corresponding label of thoracic 
diseases. Finally, we perform the classification attention block to 

Fig. 2. The overall framework for thoracic diseases classification. After extracting spatial features from the backbone, a learnable label embedding is sent to our 
Transformer-based dual-path decoder (TransDD) to detect and match class-related features from the feature maps. The classification attention is then used to balance 
two classification scores based on feature output and label output. 
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balance the two classification scores yielded by feature output and label 
output, respectively. 

3.2.1. Transformer-based dual-path decoder block 
After yielding the features F ∈ Rhw×d and a learnable label embed

ding L ∈ RN×d, we design a Transformer-based dual-path decoder 
(TransDD) which consists of a feature decoder and a label decoder, to 
efficiently establish the connection between local discriminative 
diseased features and the corresponding label of thoracic diseases. As 
shown in Fig. 3, there are three key components: spatial reduction 
attention, dual-path attention, and feature enhancement module in 
TransDD. 

Spatial reduction attention (SRA). The self-attention mechanism 
which has a larger range of receptive fields than CNN can capture var
iances in appearance, location, and scale of the lesion regions in CXR 
images. The complexity of global self-attention depends on the number 
of patches (hw). In detail, the computational complexity is proportional 
to the square of the number of patches. To reduce the complexity of the 
global self-attention, we perform average pooling followed by linear 
projection to reduce the resolution of the feature and get a matrix 
R ∈ R

hw
r2
×hw, as shown in Fig. 3(a). Here, r is set to 4. After that, the R is set 

as an intermediate for the similarity comparison, instead of directly 
multiplying by the transposition of Q ∈ Rhw×d and K ∈ Rhw×d. Formally, 
the following equations can describe the calculation process. Here, R is 
set as an intermediate for the similarity comparison. Q, K, and V, which 
are obtained through three linear projections, represent the query, key, 
and value, respectively. RK means the similarity between R and K, 
whereas QR denotes the similarity between Q and R. 

RK = Softmax(
R • KT

̅̅̅
d

√ ) (1)  

QR = Softmax(
Q • RT

̅̅̅
d

√ ) (2)  

Y = QR • (RK • V) (3) 

Dual-path attention (DPA). The architecture of dual-path attention 
is similar to spatial attention. From Fig. 3, it can be observed the dif
ference between them in detail. (1) The inputs of SRA all come from the 
same input, while the L comes from the label encoder. (2) We use a 
feature enhancement module to extract the local feature information. 
(3) After conducting two similarity comparisons, DPA is capable of 
establishing a stronger correlation between feature maps and their 
respective labels compared to conventional cross-attention. The 

following equations can describe the calculation process. Here, L is from 
the label encoder, whereas Q, K, and V are from feature maps which are 
yielded by three linear projections. LK means the similarity between L 
and K, whereas QL denotes the similarity between Q and L. 

LK = Softmax(
L • KT

̅̅̅
d

√ ) (4)  

QL = Softmax(
Q • LT

̅̅̅
d

√ ) (5)  

Y = QL • (LK • V) (6) 

Feature enhancement module (FEM). As shown in the green 
dashed rectangular box in Fig. 2, FEM is designed to enhance the 
expressiveness of local features, which leverage simple convolution and 
pooling operations to effectively reduce model parameters and compu
tation. The core of FEM is to use two 1 × 1 convolution operations to 
interact with features among different channels. Specifically, it can be 
expressed as Eq. (7). Here, BN is Batch normalization and ReLu repre
sents an activation function. 

FEM(f ) = BN(Conv(ReLu(BN(Conv(f ))))) (7) 

In addition, the feed-forward layer is a multilayer perceptron (MLP) 
that is utilized to select the features. M1 and M2 denote the number of 
label decoders and feature decoders, respectively. 

3.2.2. Classification attention block 
The pipeline of classification attention block (CAB) is illustrated in 

Fig. 4, while the pseudo-code is described in Fig. 5. After obtaining two 
classification scores from the feature output FO ∈ Rhw×d and label output 
LO ∈ RN×d, CAB is designed to balance the label score SLO ∈ Rd and 
feature score SFO ∈ Rd. Here, the label score is yielded by calculating the 
mean score of the label output along the dimension of the column. 
Meanwhile, we identify the maximum value across all spatial locations 
for each category. It focuses our attention on classifying scores at 
different locations for different disease categories. This particular 
mechanism can be viewed as a class-specific attention approach. This 
attention mechanism is intuitively very useful for multi-label recogni
tion, particularly in scenarios where there are objects from numerous 
classes and with varying sizes. Then, two linear projection layers (label 
head and feature head) are utilized to project the dimension of the label 
score and feature score from d to c. Finally, la is set as a hyperparameter 
to balance them. CAB provides our model with the ability to efficiently 
pinpoint and evaluate the classification scores for various object 

Fig. 3. The architecture of the proposed spatial reduction attention (a) and dual-path attention (b) in the feature decoder. The designed SRA can capture variances in 
appearance, location, and scale of the lesion regions in CXR images. And, the DPA is used to establish the connection between local discriminative features and the 
corresponding label. 
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categories across varying spatial locations. 

3.3. Training and evaluation strategy 

Multi-label classification of thoracic diseases. For the ChestX- 
ray14 dataset, we followed the official split that is publicly available 
on the NIH website which separates the dataset into a training set of 
86,524 images and a testing set of 25,596 images. The distribution of 
training and testing images overall categories in the ChestX-ray14 

dataset is given in Fig. 6, which emphasizes that the datasets are high
ly imbalanced and each image may have one or more types. In addition, 
we strictly follow the official patient-wise split standards provided by 
[8] that the SYSU dataset is randomly assigned for training (80 %), 
validation (10 %), and testing (10 %), as shown in Fig. 7. Especially, 
SYSU-PE dataset is solely leveraged for external validation. 

Multi-class classification of thoracic diseases. Following the [8], 
we adopted two-classification (COVID-19, and Non-COVID-19) and 
three-class classifications (normal, viral pneumonia, and other 

Fig. 4. The pipeline of classification attention block (CAB).  

Fig. 5. The pseudo-code of classification attention block (CAB).  
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pneumonia) on the CC-CXRI-P dataset. As shown in Table 1, the dataset 
is also assigned for training (80 %), validation (10 %), and testing (10 
%). 

The original image size in the ChestX-ray14 dataset is 1024× 1024, 
whereas the size in other datasets is various. To streamline computa

tional complexity and ensure uniform standards for experimental pur
poses, all images are resized to 384× 384. Then, the CXR images were 
enhanced by center crop and random horizontal flips. Finally, we 
trained our framework end-to-end while the feature encoder has been 
pre-trained on the ImageNet-1 k dataset [35]. The CXR images were also 
resized to 384 × 384 for validation and testing. Here, each image is 
labeled with y = {y1,y2,⋯yN}, and N is the number of categories in the 
dataset. 

Moreover, asymmetric loss [36] is employed to deal with the prob
lem of class imbalance, which is a variant of focal loss with different γ 
values for positive and negative values. P = {P1,P2,⋯PN} denotes the 
output of our framework. Then the asymmetric loss (ASL) to calculate 
the loss for each CXR image is shown in Eq. (8). Followed by [36], we set 
γ+ = 0 and γ− = 4 in our experiments as default without tuning. 

Fig. 6. Distribution of training and testing images overall categories in the ChestX-ray14 dataset. The 15 categories are Atelectasis, Cardiomegaly, Effusion, Infil
tration, Mass, Nodule, Pneumonia, Pneumothorax, Consolidation, Edema, Emphysema, Fibrosis, Pleural Thickening, Hernia, and No Finding, respectively. 

Fig. 7. The number of 15 categories for training, validation, and testing in the SYSU dataset. *The 15 categories are Consolidation, Fibrosis, Nodule, Hernia, 
Atelectasis, Pneumothorax, Edema, Pneumonia, Emphysema, Effusion, Infiltration, Pleural_thickening, Mass, Cardiomegaly, and No_finding, respectively. 

Table 1 
The number of CXR images for training, validation and testing in the CC-CXRI-P 
dataset.   

Normal Viral pneumonia Other 
pneumonia 

Total 
COVID- 
19 

Non-COVID- 
19 

Training 2,904 489 1,328 1,617 6,338 
Validation 363 62 166 202 793 
Testing 362 61 165 202 790  

X. Jiang et al.                                                                                                                                                                                                                                    
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ASL =
1
N

∑N

N=1

{
(1 − PN)

γ+ log(PN), yN = 1
(PN)

γ− log(1 − PN), yN = 0
(8)  

3.4. Implementation details 

The proposed TransDD framework is implemented by using Python 
3.7 and Pytorch 1.7.0 that PyCharm as our IDE while running on 2 
Nvidia 3090 GPUs with 48 GB memory. During the training period, our 
model utilizes a mini-batch size of 64 and an initial learning rate set at 
1e − 4, which gradually decreases by the cosine schedule [37] over the 
course of 20 epochs. Furthermore, we employ the prominent AdamW 
[38] optimizer with a momentum of 0.9 and weight decay of 1e − 3 to 
optimize the back propagation process. 

4. Results 

The proposed TransDD framework was evaluated on the ChestX- 
ray14, SYSU and SYSU-PE datasets for multi-label classification of 
thoracic diseases, while validating the ability of multi-class classifica
tion of thoracic diseases on the CC-CXRI-P dataset. 

4.1. Evaluation for multi-label classification of thoracic diseases 

We first perform extensive experiments on the ChestX-ray14, SYSU, 
and SYSU-PE datasets to evaluate the ability of our proposed TransDD 
framework for multi-label classification of thoracic diseases. Since this is 
a multi-label classification task instead of a single-label classification 
task and the datasets are extremely imbalance, the area under the 
receiver operating characteristic curve (AUC) [42] is a more reasonable 
performance metric which has been employed in most related work 
[1,3,7,16] than other metrics such as accuracy. The comparative AUC 
results of our TransDD-PVT framework and the state-of-the-art (SOAT) 
previous works on the ChestX-ray14 dataset are presented in Table 2. 
Moreover, we also compare the proposed TransDD framework to the 
CNN-based models (i.e., ResNet101 [14], and DenseNet121 [15]) and 
Transformer-based models (Swin-B [20] and PVTv2-B4 [41]) on the 
SYSU dataset, as shown in Table 3. 

Meanwhile, the SYSU-PE dataset is employed for external validation 
to verify the generalization of the model. The receiver operating char
acteristic curves (ROC) of PVTv2-B4 model and the proposed TransDD- 
PVT framework over the 4 pathologies on the SYSU-PE dataset are 
illustrated in Fig. 8. 

Based on the above results, we can gain the following observations: 
(1) The proposed TransDD-PVT framework achieved the highest mean 
AUC score of 83.1 % for all 14 pathologies on ChestX-ray14, while 
yielding the top performance for more than half of pathologies. (2) 
Compared to other existing works, our TransDD-PVT utilizes the 
specially designed SRA to effectively capture variations in the appear
ance, location, and scale of lesion regions in CXR images. Moreover, the 
DPA is used to establish the connection between local discriminative 
features and the corresponding label. Therefore, our designed dual-path 
decoder can effectively improve the performance of the backbone. For 

instance, the mean AUC score of Our TransDD-ResNet is improved by 
1.1 % than ResNet101. (3) Note that the SYSU-PE dataset which is 
consists of additional patients who underwent a routine annual physi
cian examination has not used in training. From Fig. 8, it can be seen 
that our TransDD-PVT has good generalization performance and can 
distinctly improve the robustness and AUC score of pathologies, i.e., 
Fibrosis (93.2 % vs. 93.5 %), Nodule (85.8 % vs. 87.3 %), Pneumothorax 
(94.6 % vs. 94.9 %) and Pleural thickening (91.4 % vs. 92.0 %). (4) 
Overall, these comparative results demonstrate the effectiveness of our 
TransDD framework for multi-label classification of thoracic diseases. 

4.2. Evaluation for multi-class classification of thoracic diseases 

We further evaluate the performance of our TransDD framework for 
multiclass classification of thoracic diseases on the CC-CXRI-P dataset 
through three-class classification (normal, viral pneumonia, and other 
pneumonia) and two-classification (COVID-19, Non-COVID-19). To 
quantitatively compare the CNN-based models (i.e., ResNet101 [14] and 
DenseNet121 [15]) and Transformer-based models (Swin-B [20] and 
PVTv2-B4 [41]) in identifying viral pneumonia, we calculated the test 
accuracy (ACC), sensitivity (SEN), and precision (PRE) of each infection 
type. The comparative confusion matrices of TransDD framework and 
other SOAT backbones are illustrated in Fig. 9, while the average ACC, 
SEN, and PRE are presented in Table 4. Moreover, the performance of 
Swin-B and our TransDD-Swin on two-classification (COVID-19, Non- 
COVID-19) are shown in Fig. 10. Based on these various experimental 
results, we can gain some new observations as follows: (1) By taking 
advantage of the ability of our TransDD framework, our methods 
outperform all other contrastive methods on all metrics with a large 
margin in discriminating between viral pneumonia, other types of 
pneumonia and the absence of pneumonia from CXR images. For 
example, the ACC score of TransDD-ResNet and TransDD-DenseNet 
increased by 1.01 % and 1.27 % comparing the baselines, respec
tively. Meanwhile, the SEN score of TransDD-Swin and TransDD-PVT 
are more 1.49 % and 0.84 % than the baselines. (2) According to the 
Fig. 10, it is clear see that our TransDD-PVT also achieve better metrics 
in discriminating between other viral pneumonia and COVID-19 pneu
monia from CXR images. (3) Sufficient experiments show that our 
TransDD framework has a great ability of identifying viral pneumonia. 

4.3. Visualization of attention heat maps 

Based on the above objective analysis, a gradient-weighted class 
activation map (Grad-CAM) [43] is utilized to generate the heatmaps of 
the CXR images which can approximately visualize the indicative 
attention areas, as shown in Fig. 11. Note that we do not add any 
bounding boxes for training or testing. The lower response is demon
strated in blue while the higher is highlighted in red. Compared to the 
PVTv2-B4, we can find that our TransDD-PVT framework can locate of 
lesion more precisely. For example, the heatmaps with Atelectasis and 
Pneumonia generated by our TransDD-PVT can produce smaller red 
responses than PVTv2-B4 for the small scale of the lesion regions. 
Meanwhile, the heatmaps with Cardiomegaly and Infiltrate generated 

Table 2 
Comparison results of comparative methods on the ChestX-ray14 dataset. We illustrate the AUC score (%) of each disease pathology and the average AUC scores (%) 
across the 14 classes. Significantly, the highest scores are shown in bold.  

Method Atel Card Effu Infi Mass Nodu Pne1 Pne2 Cons Edem Emph Fibr PT Hern Mean 

U-DCNN [7]  70.0  81.0  75.9  66.1  69.3  66.9  65.8  79.9  70.3  80.5  83.3  78.6  68.4  87.2  74.5 
Thorax-net [27]  75.1  87.1  81.2  68.1  79.9  71.5  69.4  82.5  74.2  83.5  84.3  80.4  74.6  90.2  78.8 
CheXNet [26]  76.9  88.5  82.5  69.4  82.4  75.9  71.5  85.2  74.5  84.2  90.6  82.1  76.6  90.1  80.7 
CRAL [16]  78.1  88.0  82.9  70.2  83.4  77.3  72.9  85.7  75.4  85.0  90.8  83.0  77.8  91.7  81.6 
DualCheXNet [39]  78.4  88.8  83.1  70.5  83.8  79.6  72.7  87.6  74.6  85.2  94.2  83.7  79.6  91.2  82.3 
LLAGnet [40]  78.3  88.5  83.4  70.3  84.1  79.0  72.9  87.7  75.4  85.1  93.9  83.2  79.8  91.6  82.4 
A3 Net [1]  77.9  89.5  83.6  71.0  83.4  77.7  73.7  87.8  75.9  85.5  93.3  83.8  79.1  93.8  82.6 
TransDD-PVT (Ours)  79.1  88.5  84.2  71.5  83.7  80.3  74.5  88.5  75.3  85.9  94.4  84.9  80.3  92.4  83.1  
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by PVTv2-B4 are fuzzy while our TransDD-PVT can yield clear and 
precise heatmaps. Moreover, the PVTv2-B4 mislocates the lesion regions 
with Mass and Effusion. Therefore, we can find that the proposed dual- 
path decoder block is not only applicable for disease classification but 
also has a powerful ability for localizing lesion regions with scale vari
ance and different locations of the lung field. 

4.4. Visualizing the distribution of feature representations 

In addition, we also perform t-Distributed Stochastic Neighbor 
Embedding (t-SNE) [44] which is a statistical method for visualizing 
high-dimensional data by giving each data point a location in a two or 
three-dimensional map. The distribution of features with different 

Table 3 
Comparison results of comparative methods on SYSU dataset. We illustrate the AUC score (%) of each disease pathology and the average AUC scores (%) across the 14 
classes. Significantly, the highest scores are shown in bold.   

Cons Fibr Nodu Hern Atel Pne1 Edem Pne2 Emph Effu Infi PT Mass Card Mean 

ResNet101 [14]  97.1  89.0  83.1  88.1  94.9  98.2  98.2  91.5  95.9  97.4  93.5  89.9  94.3  96.3  93.4 
TransDD-ResNet  97.2  89.4  83.6  96.8  95.9  97.9  98.5  92.0  95.9  97.7  93.8  90.5  95.0  96.4  94.3 
DenseNet121 [15]  97.1  89.6  83.6  90.3  94.0  98.2  98.7  92.1  96.2  97.6  93.9  90.8  94.6  96.2  93.8 
TransDD-DenseNet  97.9  89.9  84.0  94.5  95.5  98.3  98.8  92.4  96.2  97.8  94.2  91.1  94.5  96.7  94.4 
Swin-B [20]  97.6  89.8  82.2  90.9  95.8  98.2  98.8  92.4  96.0  97.7  94.2  90.8  95.1  96.6  94.0 
TransDD-Swin  97.9  90.3  83.4  92.1  95.7  98.4  98.9  92.3  97.3  98.2  95.9  90.1  95.6  96.3  94.5 
PVTv2-B4 [41]  97.0  90.3  84.3  91.3  95.3  98.4  98.4  92.5  96.6  97.6  94.2  90.3  94.7  96.4  94.1 
TransDD-PVT  97.7  90.6  84.5  91.6  96.4  98.6  98.9  93.1  97.2  97.5  94.6  91.4  95.0  96.8  94.6  

Fig. 8. ROC curves of the proposed TransDD-PVT and PVTv2-B4 model on SYSU-PE dataset over 4 pathologies for external validation.  
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thoracic diseases extracted from PVTv2-B4 and our TransDD-PVT is 
illustrated in Fig. 12. In Fig. 12(a), it is clear that our TransDD-PVT can 
gather most of the test samples in the same compact region and display 
clear boundaries between categories. By contrast, the distribution 
learned through the PVTv2-B4 appears more confusing, especially for 
Mass and Fibrosis. Meanwhile, we draw the same observation in Fig. 12 
(b), especially for viral Pneumonia and other pneumonia. Based on the 
above analysis, it can further prove that our TransDD-PVT has a 
powerful ability for guiding and recalibrating feature learning with se
mantic consistency. 

Fig. 9. Comparison of the performance of our TransDD framework to known state-of-the-art models in discriminating between viral pneumonia, other types of 
pneumonia, and the absence of pneumonia. 

Table 4 
The performance of comparative backbones and our TransDD framework in 
identifying viral pneumonia (three-class classification).   

ACC (%) SEN (%) PRE (%) 

ResNet101 [14]  92.15  90.83  90.75 
TransDD-ResNet(ours)  93.16  92.09  92.01 
DenseNet121 [15]  92.53  91.25  91.35 
TransDD-DenseNet (ours)  93.80  92.57  92.76 
Swin-B [20]  93.67  92.43  92.70 
TransDD-Swin (ours)  94.94  93.92  94.14 
PVTv2-B4 [41]  93.79  92.47  92.83 
TransDD-PVT (ours)  94.31  93.31  93.21  

Fig. 10. Comparison of the performance of the Swin-B to our TransDD-Swin in identifying COVID-19 pneumonia from CXR images.  
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5. Discussion 

5.1. Combination of label decoder and feature decoder 

In this paper, we proposed a dual-path decoder block which consists 
of the label decoder and the feature decoder. Naturally, there are many 
different combinations of label decoder and feature decoder. To 
appropriateness of our combination, we compared the performance of 
various methods on the CC-CXRI-P dataset. The mean ACCs, SENs, and 
PREs of the proposed TransDDDenseNet framework are shown in 
Table 5. It can be seen that the dual-path decoder block with two label 
decoders and one feature decoder is more beneficial in boosting diag
nostic performance. 

5.2. Selecting the dimension of the learnable label 

Moreover, a learnable label L ∈ RN×d is set to establish category- 
related features from the spatial features, where N is the number of 
categories and d is the dimension of the learnable label. To verify the 
influence of using different values of d, we performed the ablation 
experiment on the CC-CXRI-P dataset. In particular, TransDD-DenseNet 
and TransDD-PVT with two label decoders and one feature decoder are 
utilized to evaluate the influence of the dimension of the learnable. From 
Fig. 13, it can be seen that the dimension of the learnable label is related 
to the dimension of the feature extracted by the backbone. For example, 
the dimension of the learnable label of TransDD-DenseNet is set as 1024 
as same as the dimension of the feature that can achieve better perfor
mance. Conversely, the dimension of the learnable label of TransDD- 

PVT is set as 512. 

5.3. Impact of spatial reduction attention and dual-path attention 

In addition, we also investigate the impact of the proposed spatial 
reduction attention (SRA) and dual-path attention (DPA) on the CC- 
CXRI-P dataset. Here, conventional self-attention (SA) and cross- 
attention (CA) are used for comparison. From Table 6, we can find 
that the proposed SRA and DPA outperform the conventional attention 
mechanism. In detail, the DPA can achieve more 0.59 % ACC than CA, 
while the SRA attains more 0.53 % than SA. Moreover, the ACC in
creases by 1.11 % when using both SRA and DPA. 

5.4. Selection of classification scores in classification attention block 

The feature output FO ∈ Rhw×d and label output LO ∈ RN×d are ob
tained after the dual-path decoder block. Then, we consider selecting 
which one to use for classification. Therefore, we utilized TransDD- 
DenseNet with two label decoders and one feature decoder as our 
pipeline and compared the performance on the CC-CXRI-P dataset. The 
results of ACCs and SENs are shown in Fig. 14. Method A only uses 
feature output while Method B utilizes label output. Meanwhile, Method 
C and Method D use both the feature output and label out for classifi
cation. The difference between them is that the feature output in Method 
C performed the average pooling while performing the max pooling in 
Method D. On the basis of Fig. 14, we can find that Method D yields the 
highest ACC and SEN for thoracic diseases classification. The proposed 
CAB module can find the maximum value among all spatial locations for 

Fig. 11. Localization of lesion regions with PVTv2-B4 and the proposed TransDD-PVT framework. The original images are shown in the first line and the manual 
lesion regions provided by the official version are annotated with red bounding boxes in the second line. The heatmaps generated by PVTv2-B4 and our proposed 
TransDD-PVT are illustrated in the third and the fourth line, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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each category feature score via max pooling. Furthermore, la is set as a 
hyperparameter to balance them and we find that the proposed 
TransDD-DenseNet can produce a more accurate diagnosis when la is set 
to 0.8. 

5.5. Merits and limitations 

The proposed TransDD framework has a distinct advantage over 
other models in optimizing visual feature embedding and label embed
ding. Extensive experiments demonstrate the effectiveness of our 
framework for improving the performance of thoracic disease classifi
cation. However, the proposed method still reveals some limitations. 
First, the disease labels in the ChestX-ray14 are noisy, since they were 
mined from the radiological reports using NLP techniques. We used all of 
the labels without discriminating against them. Second, we had not 
considered additional information provided by the datasets, such as 
patient age, gender, medical history, and clinical symptoms views. In 
future work, we will further consider these limitations and propose the 
corresponding methods. In addition, transfer learning and few-shot 
learning may be viable directions for future research opportunities 
and potential trends in the classification of thoracic diseases. Thoracic 
diseases classification often suffers from limited labeled data. Transfer 
learning and few-shot learning techniques can be explored to overcome 

Fig 12. Visualization of the feature representations learned by PVTv2-B4 and the proposed TransDD-PVT framework on the ChestX-ray14 dataset (a) and the CC- 
CXRI-P dataset (b), respectively. The single-label CXR image is marked with different colors. 

Table 5 
The mean ACC, SEN and PRE of the proposed TransDD-DenseNet framework 
when using different combinations of label decoder and feature decoder. M1 and 
M2 denote the number of label decoders and feature decoders, respectively.  

M1 M2 ACC(%) SEN(%) PRE(%) 

0 0  92.53  91.25  91.35 
1 0  92.15  90.55  90.95 
1 1  92.53  91.41  91.26 
1 2  93.16  91.77  92.12 
2 1  93.56  92.13  92.86 
2 2  93.40  92.08  92.74  
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this challenge by leveraging pre-trained models and transferring 
knowledge from related tasks. 

6. Conclusion 

In this paper, we innovatively introduce a learnable label embedding 
as queries to detect and match class-related features from the feature 
maps, and then computed by a novel Transformer-based dual-path 
decoder (TransDD). The proposed TransDD can serve as a plug-and-play 
structure to improve the thoracic diseases classification performance of 
both CNNs and recent Transformer-based backbones. To capture vari
ances in appearance, location, and scale of the lesion regions and reduce 
the complexity of global self-attention, we design spatial reduction 
attention. And dual-path attention is designed to connect the explicit 
correlation between the features and labels. Furthermore, we utilize a 

classification attention block to balance two classification scores based 
on feature output and label output, respectively. Extensive experiments 
conducted on several datasets demonstrate the powerful ability of our 
TransDD to localize lesion regions with varying scales and different lo
cations within the lung field. This capability brings a significant boost on 
the comparative backbones. In future work, we plan to analyze the local 
discriminative diseased features and corresponding labels in greater 
detail. We also intend to utilize semi-supervised learning to rely less on 
noisy labels. 
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