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Abstract
The task of occluded person Re-identification(Re-ID) is challenging because only local infor-
mation can be used to make judgments. Also, occlusion may not be present in the training
samples, leading to limited performance of the model in inference. Traditional data augmen-
tation schemes that resize, flip, and erase the input image can alleviate this problem, but the
serial approach still results in unbalanced samples. To overcome this problem, we propose
Parallel Triplet Augmentation (PTA), which involves applying three different data augmen-
tation schemes to a single image during the training phase, thereby robustly expanding the
training data.At the same time, non-occluded critical regions of an image tend to providemore
discriminative features, so Vision Transformer-based models that process images in chunks
show significant advantages. Based on this, we design a parameter-free Token Spatial Atten-
tion (TSA) mechanism. TSA uses different schemes for different branches to calculate the
weights of each image patch, and then fuses the information in all the patch embedding tokens
with the classification head token, thus increasing the amount of spatial information in the
classification head token. Using TransReID as a backbone, the experimental results on two
occluded datasets (Occluded-Duke and Occluded-ReID) indicate that the proposed method
is competitive compared to state-of-the-art methods, with a rank-1 accuracy 0.7% higher
on Occluded-Duke. On two non-occluded datasets (Market-1501 and DukeMTMC-ReID)
and one vehicle dataset (VeRi-776), the proposed method has also reached state-of-the-art
methods, with a rank-1 accuracy 0.3% higher on the VeRi-776 dataset.

Keywords Occluded · Re-identification · Attention · Data augmentation

1 Introduction

Person Re-identification(Re-ID) is to identify the same target of different cameras, which is
widely used in person tracking and other fields. The existing Re-ID methods pay attention
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to the overall and local details of the person. But the person in the cropped images is usually
partially occluded.

Compared with the common person Re-ID, there are lots of challenges in the occluded
person Re-ID [1]. As shown in Fig. 1(a), the person is often occluded by some objects (like
trees or vehicles). Whether some key local details are occluded will affect the accuracy of the
model. A data imbalance exists between the training set and the test set in occluded Re-ID
datasets. The occluded images of persons in the training set will be less than in the test set.
Many methods [2–5] will use data augmentation before training to make up for the balance
of the data. Common data augmentations include resizing, erasing, and flipping. Erasing
masks in some areas of the image to make them invisible. Each person in the occluded Re-ID
dataset does not have the same number of occluded images, so the erasing is often used to
generate occluded images from unmasked images during training. As shown in Fig. 1(b), the
erasing only retains the local areas in the original image, which makes the erased image like
the occluded image in the real world. Through erasing, the problem of insufficient occluded

Fig. 1 Examples of occluded persons(a) and data augmentation programs(b)(c)
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images can be well solved. The network’s ability to extract information from non-occluded
parts can also be improved. As shown in Fig. 1(c), horizontal flipping performs symmetric
flipping on the pictures in the horizontal direction. Due to the person walking in the opposite
direction and the change of shooting angle between cameras, the person in different images
tends to be close to horizontal symmetry. The images after flipping in Fig. 1(c) are like those
taken by real cameras. It can be found that the horizontal flipping process is very effective
for the Re-ID.

The traditional data augmentation process applies the above methods in series to an input
image. In other words, only one output image can be obtained after the whole process. At
the same time, different data augmentations are also used randomly, which means that the
augmentation methods used by different pictures are different in the same training batch.
This will result in an uneven augmentation. To address the limitations and problems in the
traditional data augmentation process, we propose Parallel Triplet Augmentation (PTA). In
simple terms, PTA includes three parallel branches, where different data augmentations are
used in. Compared with the traditional data augmentation process, one training picture can
get three different enhanced pictures after PTA, which expands the sample variation and
expands the amount of data in the training process.

CNN’s receptive field is limited to a small area byGaussian distribution [6], so it is difficult
to extract complete non-occluded features. The pooling and convolution also decrease the
resolution of the feature map, which reduces the fine-grained feature information. Based on
the different image patches, Vision Transformer (ViT) [3] can calculate the connection in the
image to find the key areas in the overall picture. An image is divided into several patches in
ViT. After rearranging into one-dimensional patch embedding tokens, they are concatenated
with the classification([cls]) head token and sent to the transformer layers for learning. The
final output image feature is the [cls] head token after multiple transformer layers. ViT does
not lead to small receptive fields or low featuremap resolution. But it uses the [cls] head token
as the image feature will ignore all image tokens during training. Although self-attention is
used in the ViT to allow the [cls] head token to interact with each image embedding token,
the [cls] head token still can’t contain all the spatial feature information in the entire image.
In contrast, Global Average Pooling (GAP) and Maximum Pooling in CNN can integrate
features from different spatial regions and preserve local texture features in the image. For
occluded person images, the model needs to focus on non-occluded regions in the image,
which providemany detailed discriminative features [1, 7]. Based on these considerations, we
design a Token Spatial Attention (TSA) mechanism for ViT to remedy the above problems.
Based on these considerations, we design a Token Spatial Attention (TSA) mechanism for
ViT to remedy the above problems.

The main contributions of this paper are described as follows:

(1) During the training, this paper proposes a new Parallel Triplet Augmentation (PTA),
which can solve the problem of unbalanced data samples in the occluded person Re-ID
and improve the robustness of the overall network.

(2) At the output of the network, this paper proposes a novel parameter-less Token Spatial
attention. TSAuses differentmethods to calculate attentionweights according to different
branches in the backbone network and compensates for the missing spatial information
in the classification head vector.

(3) The accuracy of the Occluded-Duke [8] dataset has increased by 0.7% through using
the designed PTA and TSA. We also test on two non-occluded datasets (Market-1501
[9], DukeMTMC-reID [10]) and the vehicle Re-ID dataset (VeRi-776 [11]) to prove
the generalization of the model. Compared with the state-of-the-art methods, our result
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shows that rank-1 achieves a 0.3% increase in the VeRi-776 and a close performance in
two non-occluded datasets.

The overview of the paper is organized as follows. In the next section, we introduced the
relevant work on Person and Vehicle Re-ID tasks including occlusion. In the Section 3, we
provided a detailed introduction to the specific process of the proposed model. Afterwards,
in the Section 4, we reported on the performance of the proposed model on different datasets.
Finally, in Section 5, we evaluated the proposed model and provided prospects for future
work.

2 Related work

2.1 Occluded Person ReID

Feature alignment, high-order semantic information, and region classification are three ways
used in the existing occluded person Re-ID methods. In the approaches based on feature
alignment, STNReID [12] is based on the pairwise spatial transformer, including an STN
and ReID module. But simple one-on-one feature alignment is hard to achieve high robust-
ness. The addition of high-order semantic information can solve this problem to a certain
extent. With the use of pose information, Wang [13] designed a model with learning high-
order relations and topology information for discriminative features and robust alignment.
Its ADGC layer can suppress the message passing of meaningless features. When aligning
different local features, the proposed CGEA layer can fully use alignment learned by suitable
graph matching. Similarly, PVPM [14] extracts different pose information through the novel
pose-guided attention module. PFD [15] uses different pose information to disentangle body
components, which can selectivelymatch non-occluded parts. In addition, some local regions
can also provide lots of high-order local semantic information. It can be regarded as a sup-
plement to overall semantic information. SCP-Net [16] extracts the high-order local spatial
feature and achieves the fusion of global channel information and local spatial information.
The methods of region classification perform classification and feature extraction on body
regions. The additional external semantic cues are usually not applied during the region clas-
sification. Region classification attempts to classify body regions without using external cues.
For example, VPM [17] classifies region features through a pre-trained human body partial
model. It also uses shared regions of an image pair to suppress feature misalignment. VPM
calculates the overall feature distance between images through region-level distance. Unlike
VPM, ISP [18] uses pseudo-labels to classify body regions. It can obtain the local of both
human body parts and personal belongings. Finally, only the features of visible parts are used
in the verification phase of the ISP. This method focuses more on the region information and
ignores pose information of the recognition subject. Therefore, compared to the pose based
feature extraction, the region division and alignment effect in the recognition process is better,
but the feature extraction effect for the recognition subject is relatively reduced. MVI2P [19]
framework starting from the perspective of multiple perspectives, a multi view information
integrationmodule is proposed, including localization, quantification, and integration.DANet
[20] utilizes attention mechanism to achieve diverse feature mining, which help the model
automatically capture diverse discriminative features on a global scale. In general, attention
and pose estimation are the more mainstream and representative methods for the occluded
person Re-ID. Attribute annotation-based, clustering-based, figure convolution-based and
regularisation-based methods, have received less attention [21].
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2.2 Attentionmechanisms

The attention mechanism uses a fixed calculation method to enhance the weight of specific
regions in the network feature map. It can guide the network to focus on the critical regions
of the input images and reduce the interference of irrelevant backgrounds. For example, SA
[1] is a forward parameter-free spatial attention. Hu [22] considers the influence of different
channels in the feature map and designs the SE attention. ECA [23] is based on the SE,
which uses the faster adaptive 1D convolution to get the channel attention weights. CBAM
[24] combines channel and spatial attention to achieve spatial and channel adaptive weight
refinement. Non-local [25] obtains the association of weights by capturing the dependencies
of long-distance regions. Chen [26] coordinated and optimized the selection of spaces and
channels through the HAMmodule to enhance the feature expression ability of the network.
ABDNet [27] uses complementary attention modules to focus on the weight distribution of
channels and positions respectively and finally performs complementarity between different
weights through orthogonal constraints.

2.3 Vehicle re-ID

Vehicle Re-ID is the application of the person Re-ID in vehicles. Among the Vehicle Re-ID
methods, VANet [28] focuses on the differences between different viewpoints. This method
has good recognition performance, but it requires prior input of the perspective relationship
between image pairs. UMTS [29] uses a teacher-student model to extract integrated features
in vehicle images. SAVER [30] improves recognition in cross-vehicle datasets through self-
supervised learning. The above two methods improve model training performance through
knowledge distillation and self supervised learning, thereby achieving better results for
vehicle Re-ID. Transferred from person Re-ID methods, image segmentation and feature
alignment methods are also widely used in vehicle Re-ID. PRReID [31] uses a detection
branch to focus on local regions in vehicles. SAN [32] captures local texture information in
local branches paired with different convolutional kernels and pooling layers. SPAN [33] and
CFVMNet [34] mask different local regions to change the network’s attention to local fea-
tures. PGAN [35] increases the weight of local regions by local attention module. PVEN [36]
cuts vehicle images into four parts for feature extraction. CLAMOR [37] adds local attention
to its unsupervised network. MSINet-SAM [38] performs better supervision by TCM. This
type of method eliminates the dependency on linear classifiers, thereby achieving unbinding
of categories between the training and validation sets. The spatial alignment module within
greatly enhances the generalization ability when facing images from different domains.

3 Methods

3.1 Network structure

This section describes the components of our proposed model for the Occluded Re-ID
task [21]. As shown in Fig. 2, the proposed model consists of three modules: Paral-
lel Triplet Augmentation, Backbone, and Token Spatial Attention. Firstly, when entering
an image Iinput , the PTA will output three different images named IBase, IErase and
IFlip+Erase. After different images input, the backbone can extract the global features

f g∗ {∗ ∈ (Base, Erase, Flip + Erase)} and local features f li∗ {∗ ∈ (Base, Erase, Flip
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Fig. 2 General flowchart of the network

+Erase) , i ∈ (1, 2, 3, 4)}. All global and local features are fed into the Token Spatial
Attention module. The TSA module makes the network’s attention focus on the critical
regions of the image. As a result, the weight of the unobstructed part will increase, and the
importance of the occluded part will decrease. Depending on different inputs, the weight in
the TSA is calculated differently. The output of the global branch is fed into the global TSA,
while the output of the Jigsaw branch is fed into the local TSA. Finally, all the features output
from the TSA module are used to calculate different losses.

3.2 Parallel triplet augmentation

The traditional image data enhancement process is shown in Fig. 3(a), where data enhance-
mentmethods such as resizing, flipping, and erasing are used for the input image Iinput . These
enhancement methods are superimposed on the input image, so only one image can be output
after data enhancement. Flipping and erasing are used in I 1input , while only erasing is used in

I 2input , so some differences exist between the two images after enhancement. Different images
in a batch may be enhanced by different means, leading to uneven sample data enhancement
during training. In the occluded Re-ID dataset, the query set is almost all occluded images,

Fig. 3 Traditional augmentation and parallel triplet augmentation
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and the gallery set is nearly all unoccluded. The imbalanced sample augmentation resulting
from the traditional data augmentation during training introduces a problem where the net-
work fails to effectively address the disparity between the query set and the gallery set in
the testing phase, consequently causing a decline in the network’s recognition accuracy. The
designed Parallel Triplet Augmentation (PTA) can address the limitations in the traditional
data augmentation process and further improve the robustness of the network.

The process of parallel ternary data enhancement is shown in Fig. 3(b). For each input
image Iinput , there are three parallel enhancement branches: base enhancement, erase
enhancement, and flip-erase enhancement. Three common enhancement processes (resiz-
ing, erasing, and horizontal flipping) are used in three branches. In the base enhancement,
the input image is enlarged so the network can learn the detailed information better. In the
erase enhancement branch, each input image is first scaled up, then random regions of the
image aremasked. In the flip-erase enhancement branch, each original image is first enlarged,
then horizontally symmetric flipped, and finally, random regions are masked. The occurrence
probability of resizing and horizontal flipping in all branches is set to 1.0, while the occur-
rence probability of erasing is set to values less than 1. In other words, resizing and horizontal
flipping are applied to each image in each training batch, while erasing occurs only in part
of the images in each training batch. The reason for the erasing setting in this way is that the
number of occluded images is different for each person in the occluded Re-ID dataset, and
the proportion of the occluded area is also different. If erasing is performed on each image,
there still exists a difference in the number of occluded images for each ID. Therefore, the
erasure of randomly selected images in each batch can fit the difference in the number of
occluded images between different IDs. The ablation experiment results prove this setting
can improve the network. In contrast, resizing allows the model to capture detailed features
better and images to fit better to the network. Horizontal flipping only changes the orientation
of the images, allowing the network to extract key features of the same person in different
orientations images. These two processes do not affect the balance of the enhanced samples
compared to the erasure processing, so they can be used in each image in different branches
during training. The normalization operation is used in all three enhancement branches, and
the process is shown in (1), (2), and (3):

IBase = Resi ze(Iinput ) (1)

Ierase = Erase(Resi ze(Iinput )) (2)

I f li perase = Erase(Flip(Resi ze(Iinput ))) (3)

Compared with traditional data enhancement, which only gets one image after data
enhancement, parallel ternary data enhancement can get three enhanced images IBase, Ierase
and I f li perase for one input image. These three images will be sent to the network for training,
which expands the degree of image variation in the training process and improves the net-
work’s extraction ability for different types of person images. In Section 4.4.2, we discussed
in detail the impact of erasure probability on model performance and the selection of the final
erasure probability.

3.3 Backbone and optimization

In this model, we use the feature extractor in TransReID [3] as the backbone and implement
the Token Pixel Weights Learning (TPWL). The backbone structure is shown in Fig. 4. The
feature extractor uses the sliding convolution kernel to split the input image into different
embedding tokens. However, the pixels in each token are not equally important. In this way,
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Fig. 4 The overall backbone

Fig. 5 Detailed diagram of token spatial attention

the network should have different attention to various pixels. The TPWL in our model can
change the concentration of different pixels by the learnable token pixel weights.

The input image Iinput (size of H × W ×C) is firstly divided into N patches through the
convolution kernel. Then all the blocks are transferred into two-dimensional patch embedding
tokens, which are denoted as Tin = [T1, T2, . . . , TN ]

(
Ti ∈ R1×D

)
. The learnable token pixel

weights are denoted asW = {W1,W2, . . . ,WN } (
Wi ∈ R1×D

)
. The patch embedding tokens

Tin and the learnable token pixel weights W are combined by the Hadamard product. The
Hadamard product makes token pixel weights fully fuse into token pixels. After that, the
network can learn the weight distribution of pixels in different regions and channels, which
also improves the network’s ability to extract personal semantic information. The final output
is as shown in (4):

Tout = Tin � W = {T1W1, T2W2, . . . , TNWN } (4)
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3.4 Token spatial attention

The Token Spatial Attention (TSA) obtains token weights by their average or maximum
value, thus changing the network’s attention for different image patches, as shown in Fig. 5.
Besides, although the self-attention allows the [cls] embedding token to interact with each
patch embedding token, the [cls] embedding token still lacks spatial information and trans-
lation invariance. The TSA can compensate for the missing spatial information in the [cls]
embedding token. The TSA can be divided into global and local TSA depending on the dif-
ferent weight calculations on global or local patch embedding tokens. It is worth mentioning
that the TSA is entirely parameter-free compared with other attention mechanisms. TSAwill
not bring too many extra calculations or parameters, which doesn’t grow with the model’s
size.

3.4.1 Global token spatial attention

As shown in Fig. 5(a), the Global TSA’s inputs are the patch embedding tokens{
T g
n

}
n=1 N

(
T g
n ∈ R1×D

)
and the [cls] embedding token T g

cls , which all output from the
global branch of the backbone. In the CNN model, the GAP (Global Average Pooling) is
used to calculate the average of each region’s pixels and maps all values to the output feature
maps, which can retain the deep semantic information of the input image. Similar to GAP,
global TSA computes the average of each token to preserve the deep information, which is
denoted as

{
Ag
n
}
n=1 N

(
Ag
n ∈ R1×1

)
. The average value represents the amount of semantic

information contained in its token. Then the softmax is used to activate all the Ag
n so that they

are distributed in the (0, 1). The softmax can calculate the weight that each patch embedding
token should have according to the amount of their information. All weights are denoted
as

{
w

g
n
}
n=1 N . By multiplying w

g
n with the corresponding T g

n , the network can change the
attention distribution for different patches. After that, the new patch embedding token is

denoted as
{
T g
n

′}

n=1 N
. Finally, all tokens and the [cls] head token are fused in the following

way: firstly, calculating the average of all T g
n

′
, which is denoted as T g

Avg . Then the T g
Avg is

multiplied with the fusion coefficient β and summed with the [cls] head token T g
cls , which

outputs the final token T g
out . The computation process of global TSA is shown in (5), (6), and

(7):

T g
n

′ = so f tmax
(
Avg

(
T g
n

)) ⊗ T g
n (5)

T g
Avg =

∑N
n=1 T

g
n

′

N
(6)

T g
out = T g

Avg · β + T g
cls (7)

3.4.2 Local token spatial attention

As shown in Fig. 5(b), in the Jigsaw branch of the backbone, all the image patch embedding
tokens are divided into k groups. Each group and a corresponding local [cls] embed-
ding token will send to the Transformer layer to get the local feature. All the local

[cls] embedding token and token groups are denoted as
{
T li
cls

}

i= 1 k

(
T li
cls ∈ R1×D

)
and

{
T li
j , . . . , T li

j+N/k−1

}

i=1 k, j=1 N

(
T li
j ∈ R1×D

)
. The max pooling in CNN calculates the
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maximum of each region’s pixels in the feature map. It can preserve more local texture infor-
mation in the original image. Similar to the max pooling, the local TSA computes the max
of each token in each group, which can amplify the texture information in all tokens. All

the max values are denoted as
{
Mli

j

}

i=1 k, j=1 N

(
Mli

j ∈ R1×1
)
. Same as global TSA, the

softmax is also used to perform the activation for all Mli
j . Softmax calculates the weight

of each image patch embedding token based on the maximum value, and all the weights

are denoted as
{
w
li
j

}

i=1 k, j=1 N
. Multiplying each w

li
j and the corresponding token T li

j can

change the attention of the network for each image patch, and the new patch embedding

token is denoted as
{
T li
j

′}

i=1 k, j=1 N ,
. The T li

j
′
can further augment the information of T li

cls

in the following way: firstly, calculating the average of T li
j

′
, which is denoted as T li

Avg . Then

the T li
Avg is multiplied with the coefficient β and added with the [cls] head token T li

cls , which

outputs the final token T li
out . The computation process of local TSA is shown in (8), (9), and

(10).

T li
j

′ = so f tmax
(
Max

(
T li
j

))
⊗ T li

j (8)

T li
Avg =

∑
T li
j

′

N/k
(9)

T li
out =T li

Avg · β + T li
cls (10)

In Section 4.4.3, we conducted ablation experiments on attention factor β and determined
the final values.

3.5 Loss function

We choose classification loss and triplet loss to train the network. All the global and local
features in this network are used to calculate the above losses. The loss function is shown in
(11):

Ltotal = Lcls
(
T g
out

) + Ltri
(
T g
out

) + 1

4

4∑

i=1

(
Lcls

(
T li
out

)
+ Ltri

(
T li
out

))
(11)

In the process of inferencing, we concate the average of k local features and the global
feature as the final inference feature fin f erence, as shown in (12):

fin f erence = Concat

(

T g
out ,

∑4
i=1 T

li
out

4

)

(12)

4 Experiments

4.1 Datasets

Occluded-Duke Occluded-Duke [8] is a subset of the DukeMTMC-reID. The training set
comprises 15618 images. The query consists of 2210 occluded images. The gallery, on the
other hand, has 17661 images, some of which are occluded.

Occluded-ReID Occluded-ReID [1] contains 2000 images of 200 persons. Each per-
son has 5 fully-body images and 5 occluded images. The query and gallery each contain
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1000 images. The Occluded-ReID only provides the testing set, so we train our model the
DukeMTMC-reID.

Market-1501 The people images in Market-1501 [9] are mainly collected by 6 static
cameras (5 high-definition cameras and 1 low-definition camera) on the campus of Tsinghua
University in the summer. Each person in the dataset is captured by at least two cameras,
including a total of 32,217 images of 1,501 persons. The training set ofMarket-1501 is 12,936
images of 751 persons, and the test set is 23,100 pictures of 750 persons. During the test, the
test set is divided into a query of 3368 images and a gallery of 19732 images.

DukeMTMC-reID The images in DukeMTMC-reID [10] are mainly collected by 8 static
high-definition cameras at Duke University. Among them, 408 persons were only captured
by one camera as interference data, and the remaining 1404 persons were at least Captured
by two cameras, a total of 36,411 pictures of 1,812 persons were captured. The training set
consists of 702 IDs randomly selected from all IDs, with a total of 16522 pictures. The test
set is the other half of the IDs and the 408 IDs in the interference data, with a total of 19889
pictures. When testing, the 2228 pictures of the test set are used as the query set, and the
17661 pictures are used as the gallery.

VeRi-776 VeRi-776 [11] contains more than 50,000 images of 776 vehicles captured by
20 cameras, and each vehicle is captured by at least 2 cameras under different viewing angles,
resolutions, and occlusions. Among them, 37778 images of 576 vehicles are used for training,
and 11579 images of the remaining 200 vehicles are used for testing.

4.2 Experiment setting

4.2.1 Implementation details

The network is built through the Pytorch [45] and trained on fourNvidiaGeforceGTX1080Ti
with 11 GB. The initial weights of the feature extractors in the backbone are pre-trained on
ImageNet- 21K and then finetuned on ImageNet-1K [46]. In PTA, resizing adjusts all pictures
to 256 × 128, and the probability of erasing is set to 0.4. In TSA, the attention factor β is
set to 0.3. Due to the limitation of video memory, we use the traditional data augmentation
process in the comparison experiment of vehicle Re-ID, which resizes the vehicle image to
256 × 256. 64 images were selected for each training batch during the training, including 4
images for each ID. The training parameters are consistent with the backbone (TransReID
[3]), and the initial learning rate is set to 0.008 with cosine learning rate decay. The optimizer
used is the SGD with a momentum of 0.9 and weight decay of 1e-4.

4.2.2 Evaluation metrics

Following conventions in themost person ReID papers, we evaluate all methodswith Rank-K
and the mean Average Precision (mAP)

4.3 Experimental results

4.3.1 Results on occluded Re-ID dataset

We evaluate the performance of the proposed network on the Occluded-Duke and Occluded-
REID datasets. The compared methods can be divided into two categories depending on the
backbone, as shown in Table 1. Among the methods using CNN as the backbone, PCB [2]
horizontally slices the feature map into several pieces and extracts information individually
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Table 1 Comparison with other methods on Occluded-Duke and Occluded-REID

Methods Auxiliary Clues Backbone Occluded-Duke Occluded-REID
Rank-1 mAP Rank-1 mAP

PCB(2018ECCV) [2] no CNN 42.6% 33.7% 41.3% 38.9%

PGFA(ICCV2019) [8] no CNN 51.4% 37.3% - -

FPR(CVPR2019) [39] yes CNN - - 78.3% 68.0%

HOReID(CVPR2020) [13] yes CNN 55.1% 43.8% 80.3% 70.2%

MoS(AAAI2021) [40] no CNN 61.0% 49.2% - -

ISP(CVPR2020) [18] no CNN 62.8% 52.3% - -

PAT(CVPR2021) [41] no ViT 64.5% 53.6% 81.6% 72.1%

DRL-Net [42](2022) no ViT 65.0% 50.8% - -

TransReID(ICCV2021) [3] no ViT 66.4% 59.2% 70.2% 67.3%

FED(CVPR2022)(CVPR2022) [43] no ViT 68.1% 56.4% 86.3% 79.3%

PFD(AAAI2022) [15] yes ViT 69.5% 61.8% 81.5% 83.0%

PFT [44](2022) no ViT 69.8% 60.8% 83.0% 78.3%

Ours no ViT 70.5% 60.6% 81.1% 73.8%

before finally stitching them together as the overall feature. PGFA [8] uses pose labels tomake
the network focus on non-occluded regions. FPR [44] calculates the foreground probability
of different regions to reduce interference from occluded regions during matching. HOReID
[13] obtains important features through key human pose points in the image, and features of
different images are also horizontally aligned. MoS [39] positions occluded person Re-ID as
a set matching task without requiring spatial alignment. ISP [18] generates pseudo-labels for
body localization. In the approaches using ViT as the backbone, PAT [40]’s encoder encodes
the image as awhole based on the pixel background, and its decoder is based on different local
regions to obtain multivariate local feature pairs. DRL-Net [41] inferred the local features
in the image through a special transformer. FED [42] performs a random mask on the input
images, and then a separate mask elimination module is used to enhance the quality of the
features. PFD [15] uses the pose information to make the feature aggregation module extract
and match features. PFT [43] improves the correlation between image patches.

On the Occluded-Duke, PFT is the best performance of all comparison methods. Our
designed model improves Rank-1 by 0.7% to 70.5% compared to the best PFT, while mAP
decreases slightly to 60.6%. On the Occluded-REID, FED performs best among all compar-
ison models, with Rank-1 and mAP reaching 86.3% and 79.3%. Since the Occluded-REID
does not contain a training set, we train the model on the DukeMTMC-reID. The test results
achieved 81.10% and 73.80% for Rank-1 and mAP. Since the TransReID’s feature extractor
used in our model captures specific dataset perspective information, it causes performance
degradation when the network is trained on one dataset and then transferred to other datasets
for testing. Although our results are lower than FED, it improves by 10.9% and 1.9% on
Rank-1 and mAP compared to the TransReID. Figure 6(a)(b)(c) shows the rank-5 perfor-
mance of the model in the case of occlusion by cars, pedestrians, and objects, respectively.
In Fig. 6(a), the wrong images in the adopted backbone (TransReID) selection all have the
same occluder, while many of our selected graphs ignore the occlusion. In Fig. 6(b), the
backbone does not select the correct image for the case containing occlusion, whereas our
model selects the correct image even in the case of occlusion by a different person. As shown
in Fig. 6(c), when occlusion is not present in the gallery, the backbone selects images with
similar background stripes resulting in an error, which we avoid.
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Fig. 6 Performance of rank-5 under different Occluded (The correct image is framed with green dashed box
posts and the incorrect image is framed in red)

In addition, Table 1 lists whether additional auxiliary clues are used in the network. The
additional auxiliary clues are categorized into body region parsing and key pose body points.
FPR uses a foreground analyzer to parse human regions in the whole image, while HOReID
and PFD extract human pose key points in images. The auxiliary clues can improve the
overall network performance, but these results are still lower than some methods that do
not use auxiliary clues. Besides, using additional auxiliary clues also imposes additional
branches or parameter overhead on the overall network, which is why no additional clues are
used in our method.

4.3.2 Results on non-occluded Re-ID

To demonstrate the generalization of the proposed model, we conduct experiments on two
non-occluded holistic Re-ID datasets, as shown in Table 2. In addition to the abovementioned
methods,we compared four otherRe-IDmethods in the non-occludedRe-IDdatasets.Among
them, SPReID [47] integrates human semantic information from images into the recognition
process to improve the accuracy of the network. OSNet [4] connects deep point convolutional
kernels of different sizes in the form of residuals, thus extracting spatial features of channels
at different scales and finally fusing the features through aggregation gates. ABD-Net [27]
activates channel attention by orthogonal constraints, and SCSN [48] merges the individual
features into the final output by highlighting feature bootstrapping.

The experimental results in Table 2 show that SCSN and PFD perform better among all
comparison methods. In the Market-150, our model gets 95.5% Rank-1 and 89.0% mAP. In
the DukeMTMC, our model gets 91.0% Rank-1 and 81.6% mAP. Both results are close to
the PFD and SCSN, proving that our network performs well on the occluded Re-ID dataset
and has good generalization on the non-occluded Re-ID dataset.
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Table 2 Comparison with other methods on Market-1501 and DukeMTMC

Methods Auxiliary clues Backbone Market-1501 DukeMTMC
Rank-1 mAP Rank-1 mAP

PGFA(ICCV2019) [8] no CNN 91.2% 76.8% 82.6% 65.5%

PCB(ECCV2018) [2] no CNN 92.3% 77.4% 81.8% 66.1%

SPReID(CVPR2018) [47] yes CNN 92.5% 81.3% - -

HOReID(CVPR2020) [13] yes CNN 94.2% 84.9% 86.9% 75.6%

OSNet(CVPR2019) [4] no CNN 94.8% 84.9% 88.6% 73.5%

ISP(ECCV2020) [18] no CNN 95.3% 88.6% 89.6% 80.0%

FPR(CVPR2019) [39] yes CNN 95.4% 86.6% 88.6% 78.4%

MoS(AAAI2021) [40] no CNN 95.4% 89.0% 90.6% 80.2%

ABDNet(ICCV2019) [27] no CNN 95.6% 88.3% 89.0% 78.6%

SCSN(CVPR2020) [48] no CNN 95.7% 88.5% 91.0% 79.0%

DRL-Net(2022) [42] no ViT 94.7% 86.9% 88.1% 76.6%

FED(CVPR2022) [15] no ViT 95.0% 86.3% 89.4% 78.0%

TransReID(ICCV2021) [3] no ViT 95.2% 88.9% 90.7% 82.0%

PFT(2022) [44] no ViT 95.3% 88.8% 90.7% 82.1%

PAT(CVPR2021) [41] no ViT 95.4% 88.0% 88.8% 78.2%

PFD(AAAI2022) [15] yes ViT 95.5% 89.7% 91.2% 83.2%

Ours no ViT 95.5% 89.0% 91.0% 81.6%

On the two non-occluded datasets, the results based on the ViT are also better than those
based on the CNN, which can prove that the ViT is more suitable for the person Re-ID. In
the comparison using auxiliary clues, SPReID, HOReID, FPR, and PFD all resolve body
regions or use key point body features. Compared with the method without auxiliary clues,
these four models can’t get a massive improvement in Rank-1 or mAP and are worse than
the best-performing SCSN on Market-1501, and only PFD is slightly better than SCSN on
DukeMTMC. This also proves that using auxiliary clues may not get a considerable boost.

4.3.3 Results on vehicle ReID

We also experimented with VeRi-776 to verify the generalization of the proposed model.
Table 3 lists all results and the methods, whether using the local information. Among all
methods, only TransReID and our network use the ViT as the backbone; the rest of the
methods use CNN as the backbone. From the results, it can be found that the performance of
most methods using local features is better than that of networks using only global features.
Compared with SAVER, the best TransReID also improves Rank-1 and mAP by 0.7% and
2.4%, which shows the importance of local features and ViT in vehicle Re-ID tasks. Our
network obtains 97.4% Rank-1 and 81.7% mAP on the VeRi-776. Compared to the best-
performing TransReID, it improves by 0.3% in Rank-1, which indicates that our model
also has excellent generalization in the vehicle Re-ID dataset. Fig. 6(d) shows the rank-
5 performance for the case where only cameras 008 and 009 are available in the gallery
(containing only the occlusion of the trees), where our model selects the correct image with
different occlusions, while backbone (TransReID) selects images that all have the same
occlusion.
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Table 3 Comparison with other methods on VeRi-776

Methods Local feature Rank-1 mAP

VANet(ICCV2019) [28] no 89.8% 66.3%

UMTS(AAAI2020) [29] no 95.8% 75.9%

SAVER(ECCV2020) [30] no 96.4% 79.6%

PRReID(CVPR2019) [31] yes 93.3% 72.5%

SAN(2020) [32] yes 93.3% 72.5%

SPAN(ECCV2020) [33] yes 94.0% 68.9%

CFVMNet(ACMMM2020) [34] yes 95.3% 77.1%

PVEN(CVPR2020) [36] yes 95.6% 79.5%

PGAN(2020) [35] yes 96.5% 79.3%

GLAMOR(2020) [37] yes 96.5% 80.3%

MSINet-SAM(CVPR2023) [38] yes 96.8% 78.8%

TransReID(ICCV2021) [3] yes 97.1% 82.0%

Ours yes 97.4% 81.7%

4.4 Ablation study

We conducted ablation experiments on the overall network and parameters on the Occluded-
Duke dataset, and the results are shown below.

4.4.1 Ablation of the overall network

The results of the ablation experiments of the overall network are listed in Table 4, where the
probability of erasuring in PTA is set to 0.4. The parameter β in TSA is set to 0.3. We first
integrate the different modules into the overall network separately for comparison. When
only using PTA, the network gets 68.50% Rank-1 and 59.6% mAP. Then Rank-1 and mAP
improved by 1.9% and 0.9% by exclusively using the TPWL. In contrast, only using the TSA
can increase the Rank-1 and mAP by 1.8% and 0.5%. After that, we combine the proposed
modules within the network. Incorporating TPWL and TSA leads to the 68.5% Rank-1 and
60.0% mAP. When adding the PTA and TPWL, we observe the Rank-1 and mAP increase

Table 4 Ablation experiment of
the overall network

PTA TPWL TSA Rank-1 mAP

no no no 66.4% 59.2%

yes no no 68.5% (+2.1%) 59.7% (+0.5%)

no yes no 68.3% (+1.9%) 60.1% (+0.9%)

no no yes 68.2% (+1.8%) 59.7% (+0.5%)

no yes yes 68.5% (+2.1%) 60.0% (+0.8%)

yes no yes 70.3% (+3.9%) 60.6% (+1.4%)

yes yes no 68.7% (+2.3%) 60.2% (+1.0%)

yes yes yes 70.5% (+4.1%) 60.6% (+1.4%)
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Table 5 Ablation experiments on
different enhanced branches in
PTA

Index B E FE Rank-1 mAP

1 no no no 68.5% 60.0%

2 yes yes no 67.8% 58.4%

3 yes no yes 67.1% 57.7%

4 no yes yes 66.7% 58.7%

5 yes yes yes 70.5% 60.6%

by 2.3% and 1.0%. Compared to the above two results, employing the PTA and TSA yields
the highest performance boost, with a 3.9% and 1.4% increase in Rank-1 and mAP. Finally,
after all three modules are integrated into the network, the Rank-1 and mAP reach 70.5%
and 60.6%.

4.4.2 Ablation of PTA

We perform ablation experiments for different enhancement branches in PTA, and the results
are shown in Table 5. B, E, and FE denote the base enhancement, erase enhancement, and flip-
erase enhancement. We maintained parallelism during the ablation experiments by retaining
two parallel branches. This approach ensured consistency and comparability in this ablation
experiment.

We can obtain 68.5% Rank-1 and 60.0% mAP when the network training with the tra-
ditional data enhancement. In the comparison of Rank-1, retaining the base enhancement
yields better. It can lead Rank-1 to 67.8% or 67.15%. While using the erase enhancement
and flip-erase enhancement delivers a lower 66.7% Rank-1. In comparing mAP, the experi-
mental results tend to be higher for preserving erase enhancement. However, using the base
enhancement and the flip enhancement obtains a lower result.

Observing the above results, it is evident that the effect of using two data enhancements
in parallel is still lower than using traditional data enhancement. This is because using two
data enhancements in parallel only preserves the parallelism but ignores the integrity. The
absence of either branch may reduce the data diversity of the training images. The 70.5%
Rank-1 and 60.6% mAP obtained after training with the complete PTA supports the above
inference.

Fig. 7 Ablation of hyperparameters
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Table 6 Ablation experiments of
global and local TSA

Index Global Local Rank-1 mAP

1 no no 68.7% 60.2%

2 yes no 69.4% (+0.7%) 60.8% (+0.6%)

3 no yes 69.5% (+0.8%) 60.7% (+0.5%)

4 yes yes 69.9% (+1.2%) 61.0% (+0.8%)

In addition, we took different probabilities of erase occurrence in PTA, as shown in
Fig. 7(a). In comparing Rank-1, the network can get 70% results when setting the erase
occurrence probability to 0.3∼ 0.7. At the same time, the Rank-1 will drop when the erasure
occurrence probability is set to 0.8∼ 1. In comparingmAP, the network can achieve highmAP
when the probability of erasure occurrence is set to 0.4∼ 0.6. After considering Rank-1 and
mAP together, we finally chose 0.4 as the erasure occurrence rate used in the Occluded-Duke.

4.4.3 Ablation of TSA

We conducted ablation experiments for global or local TSA, where the erase probability in
PTA is set to 0.5. Table 6 lists all the experimental results. When the network doesn’t use the
TSA, the Rank-1 and mAP reached 68.7% and 60.2%. When only the global or local TSA is
added, the Rank-1 and mAP can be improved differently. Finally, after adding the global and
local TSA, the Rank-1 and mAP further improved to 69.9% and 61.0%. This result indicates
that using corresponding TSA for different branches of the backbone can make the network
pay more attention to the critical global and local features.

We also investigated the impact of different weight calculation methods in TSA. Table 7
presents the experimental results. Max or Avg denotes using the max(·) or Avg(·) in TSA
to compute the token weights. Both two approaches have improvements for the network.
However, the global branch of the backbone extracts the overall semantic information of the
image, so it is more balanced to use Avg(·) in the global TSA to calculate weights. Similarly,
the Jigsaw branch of the backbone extracts the local information of different regions in the
image, so using max(·) can give higher weights to local vital features. Finally, the Rank-1
and mAP are improved by 1.2% and 0.8% after using the appropriate calculation method.

The ablation experimental result of β is also presented in Fig. 7(b). When β is set from
0.2 to 0.4, the Rank-1 of the network is close to 70%. But if β continues to increase from
0.5 to 0.7, the Rank-1 gradually decreases to about 69.5%. The results of mAP of different
β are all distributed around 61.0%. It can be found that the network can get better Rank-1
when the [cls] head token is supplemented with a small amount of spatial information.

Table 7 Different calculation methods in Trans Spatial attention

Weight calculation Rank-1 mAP
Global TSA Local TSA

- - 68.7% 60.2%

Max Max 69.4% (+0.7%) 60.5% (+0.3%)

Avg Avg 69.3% (+0.6%) 60.6% (+0.4%)

Avg Max 69.9% (+1.2%) 61.0% (+0.8%)

123



Multimedia Tools and Applications

5 Conclusion

Occluded person re-identification is challenging since it can only be judged by the informa-
tion from the unoccluded part. Also, the training data for themodelmay not contain occlusion,
and the data imbalance can lead to further performance degradation. In this paper, we pro-
pose a Parallel Triplet Augmentation (PTA) for occluded person re-identification. Unlike the
traditional data enhancement process, PTA can compensate for the imbalance of each ID
occlusion picture in the occluded Re-ID dataset, and parallel data enhancement can improve
the robustness of the trained network.Meanwhile, based on theVisionTransformer,we design
a parameter-free Token Spatial Attention (TSA) attention module. At the output end of the
network, TSA calculates the weights according to the global or Jigsaw branch, respectively,
and compensates for the lost spatial information in the classification head vector. This paper
tests the proposed network on the occlusion Re-ID dataset, the overall Re-ID dataset, and the
overall vehicle dataset. Compared with the current advanced methods, it is proved that PTA
and TSA have excellent performance and generalization ability. In the ablation experiment
stage, ablation experiments on different modules also demonstrate the importance of each
module. At the same time, the ablation experiment results inside each module reflect logical
rationality. The proposed model performs excellently in occluded person Re-ID and other
Re-ID tasks. It is worth noting that we use random erasure in our enhancement scheme and
do not make targeted strategies for different types of targets. For example, the proportion and
parts of different types of vehicles to be erased during training should be considered more
carefully. Designing more flexible erasure strategies will be part of our future work.
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