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a b s t r a c t 
Background and objective: Transformers profiting from global information modeling derived from the self- 
attention mechanism have recently achieved remarkable performance in computer vision. In this study, a 
novel transformer-based medical image segmentation network called the multi-scale embedding spatial 
transformer (MESTrans) was proposed for medical image segmentation. 
Methods: First, a dataset called COVID-DS36 was created from 4369 computed tomography (CT) im- 
ages of 36 patients from a partner hospital, of which 18 had COVID-19 and 18 did not. Subsequently, a 
novel medical image segmentation network was proposed, which introduced a self-attention mechanism 
to improve the inherent limitation of convolutional neural networks (CNNs) and was capable of adap- 
tively extracting discriminative information in both global and local content. Specifically, based on U-Net, 
a multi-scale embedding block (MEB) and multi-layer spatial attention transformer (SATrans) structure 
were designed, which can dynamically adjust the receptive field in accordance with the input content. 
The spatial relationship between multi-level and multi-scale image patches was modeled, and the global 
context information was captured effectively. To make the network concentrate on the salient feature 
region, a feature fusion module (FFM) was established, which performed global learning and soft selec- 
tion between shallow and deep features, adaptively combining the encoder and decoder features. Four 
datasets comprising CT images, magnetic resonance (MR) images, and H&E-stained slide images were 
used to assess the performance of the proposed network. 
Results: Experiments were performed using four different types of medical image datasets. For the 
COVID-DS36 dataset, our method achieved a Dice similarity coefficient (DSC) of 81.23%. For the GlaS 
dataset, 89.95% DSC and 82.39% intersection over union (IoU) were obtained. On the Synapse dataset, the 
average DSC was 77.48% and the average Hausdorff distance (HD) was 31.69 mm. For the I2CVB dataset, 
92.3% DSC and 85.8% IoU were obtained. 
Conclusions: The experimental results demonstrate that the proposed model has an excellent generaliza- 
tion ability and outperforms other state-of-the-art methods. It is expected to be a potent tool to assist 
clinicians in auxiliary diagnosis and to promote the development of medical intelligence technology. 

© 2023 Elsevier B.V. All rights reserved. 
1. Introduction 

Convolutional neural networks (CNNs) have achieved state-of- 
the-art performance in many medical segmentation tasks [ 1 , 2 ], 
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demonstrating the importance of convolutional operations for im- 
age modeling and understanding. The effectiveness of convolution 
operations can be attributed to many key factors, such as param- 
eter (weight) sharing, local (sparse) connections, and translation 
invariance [3] . These properties are largely inspired by biological 
vision neuroscience [4] , which give CNNs a strong inductive bias. 
Despite the significant success of CNN-based methods, they still 
have shortcomings in capturing global contextual information [5] . 
Because existing works obtain global information by generating a 
very large receptive field, this requires continuous down-sampling 
to make the stacked convolutional layers deep enough. However, 
deep networks can cause problems, such as local information loss 
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and training difficulties on tiny datasets [6] . Some studies [7] have 
utilized non-local self-attention mechanisms in the model global 
context, however, because their computational complexity typi- 
cally increases quadratically with the size of the space, they may 
only be appropriate for low-resolution feature maps. Other studies 
[8] have utilized atrous convolution to obtain long-distance infor- 
mation, which help segment large targets but not tiny targets. 

Originally used for sequence-to-sequence predictive modeling 
in natural language processing (NLP) tasks [ 9 , 10 ], Transformer has 
recently attracted considerable interest in computer vision. The 
self-attention mechanism in Transformer can dynamically adjust 
the receptive field according to the input content; therefore, it is 
better than the convolution operation in modeling long-range de- 
pendencies. However, the number of pixels in a typical image is 
much larger than the number of data units (such as words), mak- 
ing it difficult to apply standard attention models to images. De- 
spite many attempts [ 11 , 12 ], no dramatic change in NLP has yet 
occurred. The proposal of Vision Transformer (ViT) is an important 
step in applying Transformer in the field of computer vision [13] . 
The main contribution of this work is to use 2D image patches 
(rather than pixels) with location information as input, embed the 
image patches in a shared space, and use a self-attention mod- 
ule to learn the relationship between these embeddings. Although 
Transformer is good at modeling the global context, it has limita- 
tions in capturing fine-grained details, and the training of ViT re- 
quires huge datasets. Therefore, recent studies have attempted to 
link CNNs and Transformer to combine their advantages [14] . 

This paper proposes a novel transformer-based medical image 
segmentation network called multi-scale embedding spatial trans- 
former (MESTrans). The introduction of the self-attention mech- 
anism can improve the inherent limitation of the CNN, which 
is that its effective receptive field is smaller than the theoreti- 
cal receptive field, making it challenging to cover the full image 
in practical experiments [15] . Based on U-Net, a multi-scale em- 
bedding block (MEB) and multi-layer spatial attention transformer 
(SATrans) structure were added to focus on the connections be- 
tween multi-scale image patches and model long-distance global 
relationships. Meanwhile, a feature fusion module (FFM) was con- 
structed, which combines the encoder features with the decoder 
features and adaptively focuses on important information through 
network training. The main innovations of this study are as fol- 
lows: 

(1) A novel medical image segmentation network, MESTrans, is 
proposed, which introduces a self-attention mechanism to 
improve the inherent limitations of the CNN. The proposed 
MEB, multi-layer SATrans, and FFM all play important roles 
in the network, which enhances its overall segmentation 
performance. 

(2) An MEB and multi-layer SATrans based on multi-layer spatial 
attention are proposed, which can dynamically adjust the 
receptive field according to the input content, thereby en- 
hancing the ability of the network to extract global features 
adaptively. This enables the modeling of the spatial relation- 
ship between multi-level and multi-scale image patches, ef- 
fectively capturing global context information. 

(3) An FFM is proposed, which performs global learning and 
soft selection between shallow and deep features, combining 
them adaptively to focus the network’s attention on salient 
feature regions. 

(4) The proposed network was validated using four different 
types of medical image datasets. Our method achieved 
81.23% Dice similarity coefficient (DSC) on the COVID-DS36 
dataset, 89.95% DSC and 82.39% intersection over union 
(IoU) on the GlaS dataset, 77.48% average DSC and 31.69 mm 
average Hausdorff distance (HD) on the Synapse dataset, and 

92.3% DSC on the I2CVB dataset, all of these reaching excep- 
tional results. 

2. Related works 
2.1. Medical image segmentation algorithms 

Many classic segmentation networks have emerged in the field 
of image segmentation. The emergence of the fully convolutional 
network (FCN) [16] significantly advanced the development of seg- 
mentation networks. It modifies the last fully connected layer of 
the classification network to a convolutional layer and introduces 
an end-to-end fully convolutional mechanism to achieve pixel-level 
segmentation. In 2015, the classic encoder-decoder network U-Net 
[17] set off a wave in the field of medical image segmentation, 
and many improved networks based on U-Net have emerged since 
then. Attention U-Net [18] added a channel attention mechanism 
based on U-Net to enhance global feature representation. UNet ++ 
[19] concatenated the first four layers of U-Net, allowing the net- 
work to learn the importance of different depth features. V-Net 
[20] provided a 3D image segmentation method and introduced 
a new objective function to deal with the extreme imbalance be- 
tween the foreground and background. DeepLab v1 [21] combined 
a deep convolutional network with a probabilistic graphical model 
and proposed an atrous convolution algorithm to expand the re- 
ceptive field and obtain more contextual information. Furthermore, 
it used fully convolutional conditional random fields [22] to im- 
prove the model’s ability to capture details. DeepLabv2 [23] added 
the atrous spatial pyramid pooling (ASPP) module based on v1. 
ASPP used atrous convolution with different atrous rates to capture 
multi-scale global information of the image. The pyramid scene 
parsing network PSPNet [24] contained a hierarchical global prior 
structure called the pyramid pooling module, which could obtain 
contextual information at different scales and sub-regions, com- 
bined with four different pyramid scale features. Several studies 
have demonstrated the significance of extracting multi-scale in- 
formation for medical image segmentation tasks. For instance, Shi 
et al. [25] proposed a lightweight network based on multi-scale 
input and feature fusion, which achieved good segmentation re- 
sults for cardiac magnetic resonance images. Attention mechanisms 
have also been an active topic of research. To enhance the net- 
work’s ability to perceive lesion boundaries, Fan et al. [26] used 
a set of implicitly recurrent reverse attention (RA) modules and 
explicit edge-attention guidance to establish the relationship be- 
tween areas and boundary cues. Chaitanya et al. [27] proposed a 
strategy to extend the contrastive learning framework to segment 
3D medical images under semi-supervised conditions with limited 
labeling. The new contrast strategy exploited domain-specific cues, 
namely similarity in the structure of 3D medical images. At the 
same time, this paper proposed a local version of contrast loss to 
learn local region-unique representations that are useful for pixel- 
wise segmentation. 
2.2. Transformer-based segmentation network 

Xie et al. [28] proposed a framework that effectively com- 
bines convolution and Transformer. In this framework, a CNN was 
used to extract feature representations, and an efficient deformable 
Transformer structure was constructed to model the long-range 
dependencies of the feature maps. This module focused on a small 
part of the key areas so that the amount of calculation and space 
complexity were greatly reduced. Chen et al. [29] proposed a novel 
medical image segmentation network that combined the advan- 
tages of the Transformer and U-Net. The transformer first encoded 
the output feature map of the convolutional network as a learn- 
able embedding sequence to extract global context information. 
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Fig. 1. The structure of the proposed MESTrans. 
The decoder then up-sampled the encoded features and finally 
combined them with the encoder’s feature map to achieve accu- 
rate segmentation. Cao et al. [30] proposed Swin-Unet, which is 
an encoder-decoder structure and composed of Swin Transformer 
[31] modules, making full use of global dependencies. Valanarasu 
et al. [32] proposed a Medical Transformer (MedT) network, which 
combined long and short-range dependencies by having a shallow 
global branch to extract features from the entire image and a deep 
local branch to process image patches. Tang et al. [33] proposed 
Swin UNETR for 3D medical image segmentation. The Swin Trans- 
former modules comprised the encoder, which was pre-trained on 
three auxiliary tasks designed to solve the issue of a lack of med- 
ical annotation data, and the Transformer requires a large amount 
of data for training. In addition, based on the Swin Transformer, Du 
et al. [34] combined the two designed modules, the dense mul- 
tiplicative connection module and local pyramid attention mod- 
ule, to propose SwinPA-Net. They cascaded multi-scale semantic 
feature information through dense multiplicative feature fusion to 
minimize the interference of shallow background noise and im- 
prove feature expression. 
3. Method 

In this section, we first introduce the overall architecture of the 
network, then describe the specific modules, and finally introduce 
the loss function used. 
3.1. Network architecture 

The proposed segmentation network MESTrans is mainly com- 
posed of a UNet encoder, MEB, multi-layer SATrans, and FFM. The 
overall structure is shown in Fig. 1 , which is a codec structure. 
The encoder is based on UNet and the decoder employs an FFM 
to guide the learning of deep and shallow features. The network 
has four scale layers. The MEB at each layer transforms the feature 
map provided by the encoder into a multi-scale embedding vector, 
which is then supplied to the SATrans module. The SATrans is com- 
posed of L SATrans layers. Through the multi-head spatial attention 

mechanism, it constructs the spatial dependencies between image 
patches at different levels and captures multi-scale global informa- 
tion. The reconstruction block re-transforms the SATrans-generated 
vectors into feature maps. In the decoder part, the decoder block 
of each layer contains an FFM that performs global learning and 
soft selection between shallow and deep features. Finally, the pre- 
diction result of the original image resolution is output through a 
segmentation head. 
3.2. Multi-scale embedding block 

In the medical image segmentation task, we hope that the net- 
work can better perceive the target area; however, because the 
large variability in target size, it is difficult to locate the target area 
accurately when the target size is small. The main reason for this is 
that small target features are difficult to retain during continuous 
downsampling. To retain as many small target features as possi- 
ble, we designed four MEBs before sending the feature map to the 
SATrans. For medical image segmentation tasks, preserving small 
target features by fusing multi-scale local and global information 
is more reliable. Therefore, we leverage large kernel convolutions 
in the MEB to enhance the feature extraction ability of the net- 
work for small targets. Large kernel convolutions can also expand 
the receptive field, reduce the loss of spatial location information, 
and enhance the spatial positioning ability of the network. 

Without a loss of generality, Fig. 2 shows the structure of the 
MEB. The input of the MEB is the feature map F i ∈ R H i ×W i ×C i , i = 
1 , 2 , 3 , 4 output by the encoder. Taking the MEB of the i th layer 
as an example, a window of a certain size is first applied to the 
feature map to perform the window split operation: 
P i j = Split (F i ) ∈ R h i ×w i ×C i , j = 1 , 2 , · · · N (1) 
where N is the number of image patches and Split ( · ) represents 
the operation of the window split on the feature map. The center 
point of each window is the same, but the scale is different, and 
the step size is kept unchanged, resulting in the same number of 
image patches being obtained via sampling. Then, multi-scale fea- 
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Fig. 2. Architecture of the multi-scale embedding block. The purple, orange, and green rectangles in the figure represent the size of the convolution kernels at different 
scales. Each layer of the multi-scale embedding block applies M i convolution kernels of different scales. 

Table 1 
Parameters of multi-layer embedding. The first column is the number of layers, the second column is 
the scale of the input feature map of each layer, and the third column is the size of the convolution 
kernels used by each layer. The first to fourth layers use 8, 4, 2, and 1 kernels, respectively. The fourth 
column is the step size, the fifth column is the size of the sampled feature map, and the last column is 
the embedding size. 

Layer Scale Convolution kernels Step Output Embedding size 
1 224 × 224 × 64 128,64,32,16,8,4,2,1 32 7 × 7 × 64 49 × 512 
2 112 × 112 × 128 64,32,16,8 16 7 × 7 × 128 49 × 512 
3 56 × 56 × 256 8,4 8 7 × 7 × 256 49 × 512 
4 28 × 28 × 512 4 4 7 × 7 × 512 49 × 512 

ture extraction is applied to all image patches: 
V i o = S Con v ( F i ,P i ) ∈ R √ 

N ×√ 
N ×C i , o = 1 , 2 , · · · M i (2) 

where M i denotes the number of convolution kernels used in the 
i th layer. The first to fourth layers use eight, four, two, and one 
kernels, respectively. S _ Con v ( A, B ) represents the convolution oper- 
ation on feature map A with a fixed window, and the window size 
is consistent with the size of B. Finally, the extracted features are 
concatenated in the channel dimension and flattened in the spatial 
dimension: 
E i = F lat ten [Concat (V i 1 , V i 2 , · · ·V i M i )] ∈ R N×

∑ 
C (3) 

where !C = M i × C i represents the length of the embedding vec- 
tor of the final output. Table 1 lists the detailed parameters of the 
MEB for each layer. 
3.3. Spatial attention transformer 

In the medical image segmentation task, we expect the seg- 
mentation network to adaptively perceive the target region. Ow- 
ing to the large variability between the target types of medical im- 
ages, the boundary between the target and the surrounding tis- 
sue is blurred, and the difference is small. Thus, it is difficult for 
the network to identify the target location accurately. To overcome 
these difficulties, we introduce an attention mechanism. 

We designed the SATrans between the encoder and decoder. 
The SATrans is improved based on the standard Transformer 
model, which consists of L SATrans layers. For the segmentation 

model, SATrans has two advantages: first, compared to conven- 
tional convolution, the self-attention mechanism can dynamically 
adjust the receptive field in accordance with the input content, and 
the ability of the network to adaptively extract global features will 
be enhanced; second, compared to the conventional skip connec- 
tion, SATrans can combine multi-scale global information to guide 
each layer to output shallow features with higher discriminability. 

Taking the first layer as an example, as shown in Fig. 3 , the 
input is the four-layer embedding vector T i ∈ R N×d , ( i = 1 , 2 , 3 , 4 ) 
output by the MEB, where i represents the number of layers, N 
represents the number of image patches, and d is the number of 
channels. As listed in Table 1 , N = 49, and d = 512. The specific 
operation of the SATrans layer is as follows: First, the query vector 
(Q), key value (K), and value (V) are obtained through the weight 
matrix, which can be expressed by formula (4): 
Q i = T i W Q i , K = T !W K , V = T !W V (4) 
where W Q i , W K , W V ∈ R d×d , T ! = concat( T 1 , T 2 , T 3 , T 4 ) , and T ! ∈ 
R 4 N×d . Then, Q, K, and V perform a self-attention operation. A sim- 
ilarity matrix is generated using Q, K, and a weight on V to obtain 
the correlation between multi-level and multi-scale spatial regions. 
This can be expressed by formula (5): 
A i = sof t max (Q i K T √ 

d 
)

V (5) 
The multi-head spatial attention mechanism refers to the use 

of multiple groups of W Q i , W K , and W V weight matrices to generate 
multiple groups of Q i , K, and V, which can be expressed by formula 

4 



Y. Liu, Y. Zhu, Y. Xin et al. Computer Methods and Programs in Biomedicine 233 (2023) 107493 

Fig. 3. Architecture of the spatial attention transformer layer. 

Fig. 4. Architecture of the feature fusion module. 
(6): 
MSA i = (A 1 i + A 2 i + , · · · , + A M 

i )/M (6) 
where M denotes the number of heads. Finally, add the multi-layer 
perceptron (MLP), normalization layer (LN), and residual connec- 
tion structure, which can be expressed by formulas (7) and (8): 
O ′ i = MSA ( LN ( Q i ) ) + Q i (7) 
O i = MLP (LN (O ′ i )) + O ′ i (8) 

These two formulas are repeated L times to form an l -layer 
Transformer structure, and to re-convert the final output vector O i 
into a feature map. 
3.4. Feature fusion module 

The overall medical image segmentation network has a codec 
structure. The shallow feature output by the encoder has more ac- 
curate target location information, but insufficient semantic fea- 
tures, whereas the deep features captured by the decoder have 

strong semantic information. Therefore, we propose an FFM that 
performs global learning and soft selection between shallow and 
deep features, combining them adaptively to focus the network’s 
attention on salient feature regions. 

The FFM structure is shown in Fig. 4 . First, the feature map O i 
output by the reconstruction block and decoder feature map D i 
are added, and then the channel attention masks F a v g ∈ R C× 1 × 1 
and F max ∈ R C× 1 × 1 are obtained by global average pooling (GAP) 
and global maximum pooling (GMP), respectively. Then, perform 
the MLP operation and add them up to obtain CA i . This can be ex- 
pressed by formula (9): 
CA i = M LP ( GAP ( O i + D i ) ) + M LP ( GM P ( O i + D i ) ) (9) 

Finally, the sigmoid normalization operation is performed on 
CA i to obtain S i , and S i is used to weigh the initial feature maps 
O i and D i , which is expressed by formula (10): 
Z i = D i S i + O i ( 1 − S i ) (10) 

By assigning different weight values to O i and D i , the network 
can perform a soft selection, which enhances the adaptability of 
the network. 
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Table 2 
Multi-class lesion segmentation comparison on the COVID-DS36 dataset. (mean ±standard deviation of 
the Dice similarity coefficient, sensitivity, and specificity). 

Methods Metrics GGO (%) Interstitial Infiltrates (%) Consolidation (%) 
Attention U-Net [18] DSC 73.47 ±0.92 75.70 ±0.93 80.18 ±0.74 

Sen. 70.26 ±0.88 77.56 ±0.55 81.26 ±0.31 
Spec. 99.93 ±0.01 99.57 ±0.01 99.87 ±0.01 

UNet-CBAM [40] DSC 74.69 ±1.07 74.40 ±1.00 81.21 ±1.06 
Sen. 76.56 ±1.47 77.68 ±0.73 81.99 ±0.92 
Spec. 99.88 ±0.01 99.56 ±0.04 99.88 ±0.01 

UNet ++ [19] DSC 69.55 ±2.50 69.94 ±2.27 78.80 ±1.23 
Sen. 65.91 ±2.87 71.10 ±2.00 76.96 ±0.42 
Spec. 99.91 ±0.01 99.56 ±0.08 99.88 ±0.02 

PAE-Net [41] DSC 77.04 ±1.30 79.00 ±1.14 82.41 ±0.39 
Sen. 78.83 ±0.68 82.23 ±0.57 83.69 ±1.02 
Spec. 99.89 ±0.02 99.68 ±0.04 99.87 ±0.01 

MedT [32] DSC 65.21 ±2.07 60.45 ±1.39 75.18 ±1.09 
Sen. 68.97 ±1.96 65.56 ±1.28 74.96 ±0.71 
Spec. 99.70 ±0.02 99.09 ±0.04 99.80 ±0.01 

TransUNet [29] DSC 77.45 ±0.96 78.83 ±0.53 80.13 ±0.64 
Sen. 79.00 ±1.07 80.13 ±0.50 80.38 ±0.63 
Spec. 99.86 ±0.01 99.60 ±0.01 99.86 ±0.01 

Swin-Unet [30] DSC 78.14 ±0.88 76.78 ±1.42 80.68 ±1.19 
Sen. 80.65 ±0.78 79.74 ±0.82 81.61 ±1.26 
Spec. 99.86 ±0.01 99.50 ±0.06 99.87 ±0.01 

MESTrans (Ours) DSC 81.23 ±0.60 86.27 ±0.37 83.23 ±0.21 
Sen. 81.04 ±0.98 86.89 ±0.51 83.69 ±0.35 
Spec. 99.91 ±0.01 99.74 ±0.01 99.85 ±0.01 

3.5. Loss function 
The loss functions used are the dice loss and cross-entropy loss, 

which can be expressed by formula (11): 
L = L dice + L ce (11) 

The dice loss is described by formula (12): 
L dice ( X, Y ) = 1 − 2 | X ∩ Y | 

| X | + | Y | (12) 
where X represents the prediction result and Y represents the true 
label. Dice loss is used to calculate the degree of overlap between 
the experimental predictions and true labels. 

The cross-entropy loss function is expressed by formula (13): 
L ce = N ∑ 

i =1 y i log ̂  y i + (1 − y i ) log (1 − ˆ y i ) (13) 
where N is the number of samples, y is the true label, and ˆ y is the 
predicted result. It can be observed that when y = 1, the closer 
the prediction result is to 1, the smaller the loss function; when 
y = 0, the closer the prediction result is to 0, the smaller the loss 
function. 
3.6. Dataset 

This study conducted experiments using four datasets. 
(1) The dataset COVID-DS36 was jointly established with part- 

ner hospitals. The dataset contains a total of 4369 com- 
puted tomography (CT) images obtained from lung scans 
of 36 patients, of which 18 had COVID-19 infection and 18 
were normal patients. Clinical diagnosis demonstrates that 
COVID-19 has obvious imaging characteristics in lung CT im- 
ages [ 35 , 36 ]. The dataset has a male-to-female ratio of 5:7, 
and the age distribution of the patients ranges from 6 to 
66 years. Among the 18 patients, 11 had mild symptoms, 4 
had moderate symptoms, and 3 had severe symptoms. The 
dataset was annotated by professional doctors and contained 
three diseases: ground-glass opacity (GGO), interstitial infil- 
tration, and lung consolidation. In the experiment, 3496 CT 

images were used for training, and 873 images were used 
for testing, where 25% percent of the data were randomly 
selected as the test set. The split of the training and test sets 
was patient-independent. 

(2) The second dataset is a gland segmentation dataset (GlaS) 
[37] . Glands are present in most organ systems, such as the 
prostate and breast, which are significant histological struc- 
tures and are the primary mechanism for the production of 
carbohydrates and proteins. Adenocarcinomas are a common 
type of cancer. The morphology of the gland is frequently 
used by medical professionals to assess the aggressiveness 
of adenocarcinomas. Therefore, accurate gland segmentation 
is crucial for diagnosis. The GlaS dataset includes 165 im- 
ages from H&E-stained slices, of which 74 are benign and 91 
are malignant. In the experiment, 75 images were used for 
training, 10 images were used as validation samples, and the 
remaining 80 images were used for testing. 

(3) The third dataset is the public dataset Synapse [38] , which 
includes 30 abdominal CT scan sample sequences. It con- 
tains the annotations of 8 abdominal organs (aorta, gallblad- 
der, spleen, kidney (L), kidney (R), liver, pancreas, stomach) 
and a total of 3779 axial CT images. In the experiment, 18 
scans (2212 axial slices) were used as training samples and 
12 (1567 axial slices) were used as test samples. 

(4) The fourth dataset is the public dataset I2CVB [39] . I2CVB 
is a collaborative community of common datasets for com- 
puter vision that aims to provide common evaluation meth- 
ods as a basis for data collection and sharing. The I2CVB 
dataset contains multiparametric magnetic resonance imag- 
ing (mpMRI) sequences and lesion labels of 17 prostate can- 
cer (PCa) cases. Each patient had only one lesion, and each 
sequence contains 13–15 images. We randomly selected 20% 
of these as the test set and the remaining data as the train- 
ing set. 

3.7. Implementation and evaluation 
For all the experiments, data enhancement operations, such 

as random rotation (0 °, 90 °, 180 °, 270 °), random scaling (0.8–1.2 
times), and random flipping, were applied to increase the amount 
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Fig. 5. Segmentation results on the COVID-DS36 dataset. The three color markers correspond to the three lesions, green for ground-glass opacity, yellow for interstitial 
infiltration, and red for lung consolidation. 

Table 3 
Binary segmentation comparison on the GlaS dataset. ↑ 
means the higher the better. (mean ± standard devia- 
tion of the Dice similarity coefficient and intersection 
over union). 

Methods DSC (%) ↑ IoU (%) ↑ 
U-Net [17] 86.34 ±0.65 76.81 ±0.79 
UNet ++ [19] 87.07 ±1.20 78.10 ±1.93 
Attention U-Net [18] 86.98 ±1.05 77.53 ±1.59 
MRUNet [42] 87.72 ±0.49 79.39 ±1.06 
TransUNet [29] 87.63 ±0.44 79.10 ±0.93 
MedT [32] 82.92 ±0.62 72.46 ±0.86 
Swin-Unet [30] 88.25 ±0.74 79.86 ±0.90 
PAE-Net [41] 89.63 ±0.71 82.08 ±0.79 
MESTrans (Ours) 89.95 ±0.86 82.39 ±0.77 

of data and improve the robustness of the model. The model 
was implemented using the PyTorch framework. The experimen- 
tal settings and evaluation indicators of the four datasets are as 
follows: 

(1) For the COVID-DS36 dataset, experiments were performed 
on a single Nvidia Titan RTX 24GB GPU. In the experi- 
ment, the batch size was set to 8, the input image size was 
224 × 224, the stochastic gradient descent (SGD) optimizer 
was applied to train the network, and the initial learning 
rate was set to 0.001. The network used the DSC, sensitiv- 
ity, and specificity as metrics. Sensitivity refers to the prob- 
ability of not being missed when diagnosing a disease and 
specificity refers to the probability of not being misdiag- 

nosed when diagnosing a disease. They are calculated as fol- 
lows: 
DSC = 2 | A ∩ B | 

| A | + | B | (14) 
Sensit i v it y = T P 

T P + F N (15) 
Speci f icity = T N 

T N + F P (16) 
where A and B indicate the predicted area and the ground truth, 
respectively. TP, TN, FP, and FN indicate true positives, true nega- 
tives, false positives, and false negatives, respectively. 

(1) For the GlaS dataset, the network input image size was 
224 × 224, the Adam optimizer was applied to train the 
network, the initial learning rate was set to 0.001, and the 
batch size was 4. Training was performed on an Nvidia 
GeForce GTX 1080Ti 11GB GPU. DSC and IoU were used as 
metrics, and the calculation of IoU can be expressed by for- 
mula (17): 
IoU = | A ∩ B | 

| A ∪ B | (17) 
(2) For the Synapse dataset, the network input image scale was 

224 × 224, the batch size was 24, and the SGD optimizer 
was applied to train the model. The initial learning rate 
was set to 0.01, momentum was 0.9, and weight decay was 
0.0 0 01. The training was performed on three Nvidia GeForce 
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Fig. 6. Segmentation results on the GlaS dataset. 
GTX 1080Ti 11GB graphics cards. DSC and HD were used as 
metrics, where HD defines the distance between two sets; 
therefore, the smaller the HD, the closer the prediction re- 
sult is to the true label. For each point in set A, the mini- 
mum distance from set B was calculated and then the max- 
imum value was taken as the distance from A to B. The dis- 
tance from sets B to A was calculated in the same manner. 
Then the maximum value between the two was taken as HD, 
which can be expressed by formula (18): 
H ( A, B ) = max (max 

a ∈ A 
{ 

min 
b∈ B ∥ a − b∥ } 

, max 
b∈ B 

{ 
min 
a ∈ A ∥ b − a ∥ } )

(18) 
(3) For the I2CVB dataset, experiments were performed on a 

single Nvidia Titan RTX 24GB GPU. The batch size was set 
to 8, the input image size was 224 × 224, the SGD opti- 
mizer was applied to train the network, and the initial learn- 
ing rate was set to 0.001. The network used DSC and IoU as 
metrics. 

4. Results 
4.1. Comparison with state-of-the-art methods 

This section compares the proposed network MESTrans with 
other state-of-the-art methods on the four datasets. The experi- 
mental analysis verifies the excellent segmentation performance of 
the model. 

(1) COVID-DS36 dataset. As presented in Table 2 , Attention U-Net, 
UNet-CBAM [40] , UNet ++ , MedT, TransUNet, Swin-Unet, and 
PAE-Net [39] are selected as the comparison networks. The 
DSC values obtained by segmenting the three lesion types us- 
ing UNet ++ are 0.6955, 0.6994, and 0.7880, respectively. In 
addition to traditional classical networks, we compare them 
with three state-of-the-art Transformer-based image segmenta- 
tion networks. The DSC obtained by MedT in the experiment 
is (0.6521, 0.6045, and 0.7518), and the sensitivity is (0.6897, 

0.6556, and 0.7496). TransUNet introduces a Transformer struc- 
ture at the bottom of the U-Net encoder to extract deep seman- 
tic global information. The results for DSC and sensitivity are 
(0.7745, 0.7883, and 0.8013) and (0.7900, 0.8013, and 0.8038), 
respectively. The other network is Swin-Unet, which uses Trans- 
former blocks to form a classic encoder-decoder structural 
model. The obtained DSC of the three lesions is (0.7814, 0.7678, 
and 0.8068) and the sensitivity is (0.8065, 0.7974, and 0.8161). 
The DSC and sensitivity obtained by the proposed network are 
(0.8123, 0.8627, and 0.8323) and (0.8104, 0.8689, and 0.8369). It 
can be observed that the proposed network MESTrans achieves 
excellent performance. Compared with TransUNet, the proposed 
method improves the segmentation accuracy of the three lesion 
types by an average of 4.77% on DSC and by an average of 4.04% 
on sensitivity; compared with Swin-Unet, the results have an 
average increase of 5.04% and 3.21% on DSC and sensitivity, re- 
spectively; compared with MedT, the average increase on DSC 
is 16.63% for three diseases and the average increase on sensi- 
tivity is 14.04%. 
It can be observed that the proposed network exhibits advanced 

segmentation accuracy, particularly for the two disease types, GGO 
and interstitial infiltration. In the image, the texture features of 
GGO and interstitial infiltration are relatively close, and sometimes 
it is difficult for doctors to distinguish them, whereas MESTrans 
greatly improves the segmentation accuracy of the two diseases, 
reflecting the advanced performance of the model. 

At the same time, the experimental results are also visualized 
on the COVID-DS36 dataset to verify the performance of the model. 
As shown in Fig. 5 , several sample images are selected: the first 
line is the original image, the second line is the real label, and 
the next few lines are the prediction results of the UNet ++ , MedT, 
TransUNet, Swin-Unet, and MESTrans networks. The prediction re- 
sults of the proposed MESTrans are closer to the real labels than 
those of the other networks and show stronger segmentation abil- 
ity in more complex lesion areas. Green, yellow, and red in the 
figure represent the three types of lesions: GGO, interstitial infil- 
tration, and lung consolidation. 
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(1) GlaS dataset. As presented in Table 3 , the DSC and IoU met- 

rics are used to evaluate the performance of the proposed 
network MESTrans on this dataset. The upward arrow indi- 
cates that the larger the value, the better the network perfor- 
mance. The proposed method is compared with two different 
types of networks. The first is the classic improved network 
based on U-Net, including UNet ++ , Attention U-Net, and Mul- 
tiResUNet [42] . Another type of network based on the Trans- 
former includes TransUNet, MedT, and Swin-Unet. In the clas- 
sical network, compared with U-Net, the proposed network 
improves the DSC and IoU by 3.61% and 5.58%, respectively. 
Compared with UNet ++ , MESTrans improves the DSC and IoU 
by 2.88% and 4.29%. Compared with Attention U-Net, the pro- 
posed method improves the two indicators by 2.97% and 4.86%, 
whereas compared with MRUNet, the proposed network im- 
proves these two indicators by 2.23% and 3.00%. Compared with 
the classic U-Net based network, the proposed method exhibits 
a stronger segmentation performance. 
In the network combining Transformer and convolution, the 

DSC and IoU of TransUNet, MedT, and Swin-Unet are (0.8763, 
0.7910), (0.8292,0.7246) and (0.8825, 0.7986), respectively, and the 
indicators of the proposed network MESTrans are (0.8995, 0.8239). 
Compared with TransUNet, the DSC and IoU improves by 2.32 and 
3.29%, respectively; compared with MedT, the two indicators in- 
creases by 7.03 and 9.93%; and compared with Swin-Unet, the two 
indicators increases by 1.70 and 2.53%, respectively. It can be ob- 
served that the proposed method still achieves better results than 
the advanced networks. 

As shown in Fig. 6 , the prediction results of each model are 
compared using the GlaS dataset. The first column is the original 
image, and the second column is the ground truth, followed by the 
prediction results of the proposed network MESTrans and the com- 
parison networks TransUNet, UNet ++ , and PAENet. The red dashed 
boxes in the images reflect a more accurate segmentation perfor- 
mance of the MESTrans. 

(1) Synapse public dataset. As presented in Table 4 , 8 abdominal 
organs are segmented in this dataset to verify the multi-class 
segmentation capability of the proposed network. The values in 
the table are percentage data. The second and third columns 
are the average DSC and HD predicted by each model, respec- 
tively, and the next is the DSC of the network for each or- 
gan. The upward arrow indicates that the larger the DSC, the 
more accurate the segmentation; the downward arrow indi- 
cates that the smaller the HD, the higher the segmentation 
accuracy. R50-UNet and R50-Gated-UNet [43] replace the en- 
coder parts of U-Net and Gated-UNet with ResNet50. ViT-CUP 
uses ViT as the encoder, and CUP uses continuous 2 × up- 
sampling until the feature map restores the original image res- 
olution. As presented in the table, the proposed MESTrans has a 
strong comprehensive segmentation ability. Compared with V- 
Net, the average DSC improves by 8.39%; compared with the 
classic network UNet ++ , the average DSC and HD improves by 
7.44% and 43.63 mm; compared with R50-UNet, the two indi- 
cators improve by 2.52% and 13.88 mm, respectively. The DSC 
and HD obtained by ViT-CUP are 0.6786 and 36.11 mm, which 
are improved by 9.34% and 13.12 mm on the proposed network; 
compared with MedT, the average DSC is improved by 11.21% 
and the average HD is optimized by 19.52 mm; and compared 
with Swin-Unet, the two indicators are improved by 2.72% and 
2.11 mm, respectively. At the same time, for the DSC of 8 or- 
gans, the proposed MESTrans achieves the best segmentation 
accuracy on the aorta and left kidney, and achieved the second 
highest accuracy on the right kidney, liver, pancreas, spleen, 
and stomach, demonstrating the advanced multi-class segmen- 
tation performance of the proposed method. 
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Fig. 7. Segmentation results on the Synapse dataset. 

As shown in Fig. 7 , the prediction results of each model are 
compared on the Synapse dataset. The first column is the real la- 
bel, followed by MESTrans, the proposed network, and the com- 
parison networks Swin-Unet, UNet ++ , and MedT. Different colors 
in the figure represent different abdominal organs. It can be ob- 
served that the prediction results of the proposed network are 
closer to the real labels than other networks. The white box in the 
figure demonstrates that MESTrans shows a more accurate predic- 
tion performance for the segmentation details. It can be observed 
that, first, MESTrans has better recognition ability for continuous 
regions, and more accurate segmentation performance for complex 
edges; second, MESTrans can segment target regions more accu- 
rately and make fewer false positive diagnoses. Third, MESTrans is 
better able to deal with the problem of imbalance among multiple 
classes and has greater average segmentation accuracy for each or- 
gan type. 

(1) I2CVB public dataset. This dataset includes multi-parameter 
magnetic resonance (MR) images, of which we used the ap- 
parent diffusion coefficient (ADC) image, T2-weighted (T2W) 
image, and diffusion-weighted image (DWI). As presented in 
Table 5 , our method achieved equally good results for the 
prostate organ segmentation task. Compared with the experi- 
mental results of Akardi et al. and Liu et al., our network im- 
proves by 2% on DSC and 1.5% on IoU, respectively. 

4.2. Ablation experiment 
Through ablation experiments, the roles of each module in the 

network are verified. The addition of SATrans indicates that the 
MEB module is also added. As listed in Table 6 , an ablation ex- 
periment was performed on the GlaS dataset. The first row is the 
benchmark network U-Net, which obtained DSC and IoU of 0.8634 

Table 5 
Organ segmentation comparison on the I2CVB dataset. 
↑ means the higher the better. (mean ± standard devi- 
ation of the Dice similarity coefficient and intersection 
over union). 

Methods DSC ↑ IoU ↑ 
Liu et al. [45] – 0.843 ±- 
Wang et al. [46] 0.904 ±- –

Alkadi et al. [47] 0.921 ±- –

MESTrans (Ours) 0.923 ±0.013 0.858 ±0.002 
Table 6 
Ablation experiments on the GlaS dataset. ↑ means the higher 
the better. (mean ± standard deviation of the Dice similarity 
coefficient and intersection over union). 

Methods DSC(%) ↑ IoU(%) ↑ 
Backbone (U-Net) 86.34 ±0.65 76.81 ±0.79 
Backbone + SATrans 88.99 ±1.11 81.35 ±0.80 
Backbone + FFM 87.44 ±1.16 78.80 ±0.93 
Backbone + SATrans + FFM 89.95 ±0.86 82.39 ±0.77 

and 0.7681, respectively; it can be observed in the second row that 
the addition of the SATrans module improved the two indicators by 
2.65 and 4.54% respectively. SATrans enhances the attention of the 
target area by extracting multi-level and multi-scale spatial context 
information, which is critical for the overall segmentation perfor- 
mance of the network. Additionally, it demonstrates that the fu- 
sion of global and local features is crucial for resolving the com- 
plexity of object size variation in medical image segmentation. The 
third row adds the FFM to the network backbone. The FFM can en- 
hance the feature expression ability of important areas. Compared 
to the first line, the DSC and IoU indicators increases by 1.10 and 
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Table 7 
Ablation experiments on the Synapse dataset. ↑ means the higher 
the better and ↓ represents the opposite. (mean ± standard devia- 
tion of the Dice similarity coefficient and Hausdorff distance). 

Methods Avg DSC(%) ↑ Avg HD(mm) ↓ 
Backbone (U-Net) 71.77 ±0.43 53.04 ±3.66 
Backbone + SATrans 75.57 ±0.16 36.45 ±1.29 
Backbone + FFM 74.77 ±0.90 41.81 ±2.63 
Backbone + SATrans + FFM 77.20 ±0.17 22.99 ±1.21 

1.99% respectively. The fourth line combines the FFM and SATrans 
to form the proposed network MESTrans, which obtained DSC and 
IoU values of 0.8634 and 0.7681, respectively. Compared with the 
first row, the indicators are improved by 3.61% and 5.58%, which 
fully reflects the effectiveness of the proposed module for accurate 
segmentation. 

As presented in Table 7 , ablation experiments were performed 
using the Synapse dataset. The average DSC and HD of Backbone’s 
multi-organ segmentation are 0.7177 and 53.04 mm, respectively; 
with the addition of the SATrans module, the average DSC in- 
creases by 3.80% and the HD decreases by 16.59 mm; with the ad- 
dition of the FFM module, the average DSC and HD are 0.7477 and 
41.81 mm, which are optimized by 3.00% and 11.23 mm compared 
to Backbone; finally, the SATrans and FFM modules are added to 
Backbone to form the proposed network MESTrans, and the av- 
erage DSC is 0.7720 and the HD index is 22.99 mm. Compared 
with Backbone, the DSC is increased by 5.43%, and the HD is 
decreased by 30.05 mm, demonstrating the effectiveness of the 
proposed module in enhancing the network segmentation perfor- 
mance. DSC is sensitive to the internal filling of the segmentation 
results, whereas HD is sensitive to the boundaries of the segmen- 
tation results. SATrans improves significantly on both metrics, in- 
dicating that it constructs the spatial relationship between multi- 
level and multi-scale image patches and effectively captures the 
global context information. 

4.3. T-SNE visualization results 
To further demonstrate the effectiveness of the proposed net- 

work, we visualized the feature distribution trained by MESTrans 
and Backbone. The experiment was performed on several normal 
tissue regions and lesion regions randomly sampled from the test 
set of COVID-DS36. This was realized for two reasons: first, the 
segmentation task is equivalent to a pixel-by-pixel classification 
task, and the experiment cannot be performed on the entire test 
set; second, a single CT image generally contains only one to two 
lesions, and most images do not have lesions, so visualization on 
only one CT image cannot visually reflect the overall performance 
of the model. 

As shown in Fig. 8 , the features of false positives are marked as 
"blue" and the features of false negatives are marked as "orange". 
In clinical diagnosis, false negatives are more harmful to patients 
than false positives. Our model generally reduces the probability 
of misclassification, and among the misclassified features, the pro- 
portion of false negative features is substantially lower than that of 
false positive features. In addition to the misclassified features, we 
also focus on the model’s ability to distinguish between all cat- 
egories. It can be observed that the aggregation ability for each 
category is enhanced, and the distinction between lesion regions 
and normal tissues is more significant. In conclusion, the proposed 
module can correct errors and achieve improve this task. 
5. Discussion 

With technological progress and social development, deep 
learning has had a significant impact on various fields. Medical im- 
age analysis has become a very important part of computer vision. 
Medical image segmentation is a challenging and active research 
component that can be used in different tasks such as extraction 
of lesions or target tissue regions, image-guided interventions, and 
radiology-aided diagnosis. 

In medical image segmentation, models based on codec archi- 
tectures have made substantial progress over the last few years, 

Fig. 8. The first row shows several CT images of the lungs from the COVID-DS36 test set. The second row is a random sampling of areas with lesions from the CT images 
used as T-SNE visualization. The markings in the image represent the true lesion area, green represents ground-glass opacity, yellow represents interstitial infiltration, and 
red represents lung consolidation. The bottom two diagrams show T-SNE embeddings of normal tissue areas and lesioned areas randomly. (a) Visualization of the potential 
space of Backbone. (b) Visualization of the latent space of MESTrans. 
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but there are inherent limitations to such models. The inductive 
bias of the convolution operation lacks the ability to extract ex- 
plicit globally relevant features, whereas the Transformer architec- 
ture can capture globally relevant features due to the self-attention 
mechanism, and the two can complement each other effectively in 
feature extraction. It is worth noting that the Transformer architec- 
ture requires more overhead for training because the self-attention 
mechanism has O ( n 2 ) time and space complexity concerning the 
sequence length. How to adapt the self-attention mechanism to 
medical image segmentation tasks is also a current research topic. 
To address these issues, this study proposes a novel medical im- 
age segmentation network, MESTrans, which consists of a U-Net 
encoder, MEBs, a multi-layer SATrans, and a decoder with FFMs. 
Compared to the current methods, the network achieves good ex- 
perimental results on four different types of datasets. A discussion 
of the experimental results is as follows. 

(1) As can be observed from the experiments on the COVID- 
DS36 dataset in Table 2 , the improvement in the segmen- 
tation accuracy of our model is greater for GGO and inter- 
stitial infiltration lesions. These two lesions show two main 
characteristics on CT images: first, the lesion area is discon- 
tinuous and has smaller areas; second, the texture features 
of both lesions are very similar. This result reflects the en- 
hanced perception ability and segmentation accuracy of the 
model for smaller targets, as well as the improved discrimi- 
nation ability for targets with similar texture features. 

(2) Our model achieved a state-of-the-art performance on the 
GlaS dataset. On the Synapse dataset, our method achieved 
the second-best average DCS metric and still showed good 
segmentation advantages for some of the abdominal organs 
(e.g., the aorta and left kidney). 

(3) I2CVB is a very small dataset with only 17 patients. As pre- 
sented in Table 5 , our model achieves good results on this 
small dataset. A better DSC indicates that the network can 
still perceive the target area and identify the texture features 
inside the target with a small amount of data training. 

The segmentation advantages of this network make it a great 
clinical prospect; however, some shortcomings remain. In the fu- 
ture, further compression of the model should be considered to 
reduce the number of parameters to be calculated. A 3D medi- 
cal image segmentation network can be considered to leverage the 
inter-layer correlation features of medical images to improve the 
network’s ability to identify targets. The segmentation capability 
for the model on more types of medical images can be explored to 
make a greater contribution to intelligent healthcare. 
6. Conclusion 

In this study, a new medical image segmentation network 
called MESTrans is proposed. It introduces the Transformer struc- 
ture based on the classic U-Net network, combines global and lo- 
cal information, and exhibits strong performance. In this study, 
we design and implements an MEB and multi-layer SATrans. The 
MEB divides the feature map of each layer of the encoder into 
image blocks of different sizes, generates embedding vectors with 
multi-scale information, and inputs them into a Transformer-based 
structure. In the SATrans, the spatial dependence relationship at 
multi-level and multi-scale is effectively modeled. Furthermore, an 
FFM is constructed, which combines deep and shallow features to 
select important features and gives them greater weights during 
training to improve performance. This study conducts experiments 
on four different types of medical image datasets, all of which 
achieve advanced segmentation levels, thereby reflecting the good 
generalization ability of the proposed network. Simultaneously, it 
is also compared with traditional segmentation networks, such as 

U-Net, UNet ++ , and Attention U-Net, as well as newly proposed 
Transformer-based networks, such as Swin-Unet, MedT, and Tran- 
sUNet. The comparison results demonstrate the superior perfor- 
mance of the proposed network. 
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