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Abstract
Object detection is a challenging task in remote sensing. Aerial images are distinguished by complex backgrounds, arbitrary
orientations, and dense distributions. Considering those difficulties, this paper proposes a two-stage refined oriented detector
with augmented features named RAOD. First, a novel Augmented Feature Pyramid Network (A-FPN) is built to enhance
fusion both in spatial and channel dimensions. Specifically, it mainly consists of three modules: Scale Transfer Module
(STM), Feature Aggregate Module (FAM) and Feature Refinement Module (FRM). STM reduces information loss when
fusing features in the top-down pathway. FAM aggregates features from different scales. FRM aims to refine the integrated
features using a lightweight attention module. Then, we adopt a two-step processing, which consists of a coarse stage and
a refinement stage. In the coarse stage, deformable RoI pooling is adopted to improve the network’s ability of modeling
spatial transformations and then horizontal proposals are transformed into oriented ones. In the refinement stage, Rotated
RoI align (RRoI align) is used to extract rotation-invariant features from rotated RoIs and further optimize the localization.
To enhance stability and robustness during training, smooth Ln is chosen as regression loss as it has better ability in terms of
robustness and stability than smooth L1 loss. Extensive experiments on several rotation detection datasets demonstrate the
effectiveness of our method. Results show that our method is able to achieve 79.78%, 74.7% and 94.82% on DOTA-v1.0,
DOTA-v1.5 and HRSC2016, respectively.

Keywords Remote sensing image · Oriented object detection · Augmented feature pyramid · Deformable RoI pooling ·
Rotated RoI align

1 Introduction

Object detection aims to localize the objects and identify
their categories. As a significant task in remote sensing

� Yu Zhu
zhuyu@ecust.edu.cn

Qin Shi
sq15052502008@126.com

Chuantao Fang
feraint@outlook.com

Nan Wang
wangnan@ecust.edu.cn

Jiajun Lin
jjlin@ecust.edu.cn

1 School of Information Science and Engineering, East China
University of Science and Technology, Shanghai 200237,
China

image processing, object detection has wide applications
in civil and military fields. Recently, object detection
based on convolutional neural networks (CNNs) has made
great progress. Many detection algorithms such as Faster
RCNN [1], YOLO [2], SSD [3] and RetinaNet [4]
achieve promising performances in natural image scenes.
Compared with natural images, objects in aerial images
are often densely packed and have arbitrary orientations,
various appearances and complex backgrounds. General
object detectors based on horizontal bounding boxes
report worse performance when directly applying to
aerial images. Current popular oriented object detection
algorithms employ different strategies to achieve better
detection results. For example, R3Det [5], S2A-Net [6]
focus on designing feature alignment modules. SCRDet [7],
RSDet [8] explore new loss functions and CSL [9], DCL
[10] employ label techniques. Extracting accurate features
plays a crucial role in object detection and recognition, such
as SIFT [11], HOG [12] and SDD [13]. Traditional feature
extraction methods are difficult to be applied effectively
in aerial images due to the complex backgrounds, large
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aspect ratios and dense distributions. Inappropriate feature
extraction is one of the most important reasons for low
performance when detecting rotated instances in aerial
images. To achieve high accuracy in aerial object detection,
a refined two-stage oriented detector with augmented
features (RAOD) is proposed.
First, it is noticed that FPN [14] suffers from some
limitations, which hinder its ability to extract representative
visual features. FPN is an effective component in object
detection frameworks, which extracts multi-scale features.
Specifically, FPN adopts 1×1 convolution to reduce channel
dimensions of feature maps from the backbone. Then,
FPN upsamples higher level feature maps by a factor of 2
and then merges feature maps of the same resolution by
element-wise addition in a top-down pathway. FPN-based
methods detect objects at different scales, alleviating the
conflicts between the spatial resolution and receptive fields
to some extent. However, there are some intrinsic flaws in
FPN: 1) The reduction of channels at each level leads to
information loss. The outputs of last four residual blocks
of ResNet [15] have channels of {256, 512, 1024, 2048},
respectively. The channels of higher-level feature maps are
reduced to a smaller constant of 256. The decay of channel-
wise information degrades the feature representation of
networks to a certain extent. 2) Inadequate cross-scale
feature fusion. The nearest neighbor interpolation operation
obtains the features of floating-point coordinate points
by adjacent pixels and lacks global semantic information.
FPN directly sums up feature maps after nearest neighbor
upsampling without considering the semantic gap between
different feature maps, resulting in aliasing effects. 3)
Lack of communications between non-adjacent levels.
The high-level semantic features and low-level content
features are complimentary for the task of object detection
[16]. Nevertheless, deep semantical information is weaken
gradually in the top-down pathway and non-adjacent feature
maps do not interact with each other well. To this end,
this paper devises a novel feature pyramid network that can
tackle the above problems and boost the detection accuracy
effectively.

Second, horizontal proposals can achieve higher recall
and speed while rotated proposals perform better in oriented
and densely packed scenes [17]. Thus, this paper adopts
a coarse-to-fine manner that uses horizontal anchors in
the coarse stage and rotated proposals in the refined
stage. In order to extract a fixed-size feature map (e.g.,
7 × 7) from each proposal generated by Region Proposal
Networks (RPNs), RoI pooling and RoI align are commonly
used in two-stage object detectors [1, 18]. However, the
regular operators have limitations in modeling geometric
transformations [19], leading to poor performance in
detecting various objects in aerial images. To this end,

common RoI align is replaced with deformable RoI pooling
[20] in the coarse stage and Rotation RoI align (RRoI
align) [19] is adopted in the refined stage. Deformable RoI
pooling adds 2D offsets to the sampling points in regular
RoI pooling, enabling to adaptively localize objects with
different shapes. RRoI align produces horizontal fixed-size
features maps from regions with different scales, aspect
ratios and angles, enabling the network to obtain rotation-
invariant features for more robust detection of oriented
objects.

In addition, a smooth Ln loss [21] is adopted to regress
the position of arbitrarily rotated objects to enhance the
robustness and stability of training. Our main contributions
are summarized as follows:

– To address limitations in original FPN [14], a simple
yet effective feature pyramid network named A-FPN is
devised. We design three modules which are tailored to
obtain augmented multi-scale features and can be easily
plugged into FPN-based models.

– Towards high-quality aerial object detection, we
develop a coarse-to-fine oriented detector. In the coarse
stage, geometry-robust features are extracted to facili-
tate the transformation from horizontal bounding boxes
to oriented bounding boxes. In the refinement stage,
rotation-invariant features are obtained for better detec-
tion of arbitrarily rotated objects.

– For more accurate localization of oriented objects
in aerial images, we choose smooth Ln loss [21]
in the regression branch. Compared with smooth L1

loss [22], it has better performance in robustness and
stability.

– Our proposed method achieves state-of-the-art perfor-
mances on three public large-scale datasets for aerial
object detection, including DOTA [23] and HRSC2016
[24].

The overview of the paper is organized as follows. Section 2
introduces the related work in oriented object detection
in deep neural networks, multi-scale feature fusion and
feature modeling. Then, the proposed RAOD is described
in Section 3. Next, the comprehensive experiments are
conducted in Section 4. Finally, Section 5 concludes the
whole work.

2 Related work

CNNs have been widely used in remote sensing image
object detection. Some representative approaches based
on CNNs are introduced in Section 2.1. Then we focus
on multi-scale feature fusion in Section 2.2 and feature
modeling in Section 2.3.
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2.1 Oriented object detection

General object detection methods based on horizontal
bounding box often suffer from misalignment between
objects and RoIs. For example, Faster R-CNN [1], YOLO
[2], RetinaNet [4] and SSD [3]. In recent years, many
well-designed methods adapt general object detectors to
aerial images domain and achieve promising performance
on the challenging aerial object detection benchmarks (e.g.,
DOTA [23] and HRSC2016 [24]). RoITransformer [19]
learns the transformation from horizontal bounding boxes
to rotated ones. SCRDet [7] proposes a novel loss to
solve the boundary problem caused by the periodicity of
angle. RSDet [8] proposes a modulated rotation loss to
address the loss discontinuity. Gliding Vertex [25] employs
quadrilateral regression prediction to detect multi-oriented
objects more accurately. MRDet [26] decouples detection
into different subtasks. ReDet [27] proposes Rotation-
invariant RoI Align to extract rotation-equivariant features
from the backbone. [7, 8, 19, 25–27] are representative
two-stage methods which achieve high detection accuracy.
To further improve detection speed, many one-stage
methods are proposed. R3Det [5] extracts the features from
corners and centers of the anchors and then reconstructs
the feature map to solve the inconsistency in existing
single-stage detectors. S2A-Net [6] not only realizes the
alignment between anchors and convolutional features but
also alleviates the misalignment between classification
and localization. SCRDet++ [28] designs instance level
feature denoising module to improve detection for small
and cluttered objects. Considering the complexity of pre-
defined anchors, some anchor-free algorithms have been
devised. BBAvectors [29] proposes an anchor-free detector
that regresses the box boundary-aware vectors based on the
center keypoints of arbitrarily oriented objects. Oriented
reppoints [30] employs a set of adaptive points as the
representation of oriented objects, in order to capture the
geometric and semantic information for robust detection.
O2DETR [31] designs an efficient rotated detector based
on transformer [32] by replacing the original self-attention
mechanism in DETR [33] with depthwise separable
convolutions, which implements an end-to-end detection
framework in oriented object detection. Among the existing
detection methods in aerial images, two-stage oriented
object detectors based on anchors enjoy relatively higher
accuracy, thus are still in a dominant position. The above
methods show excellent performance, but most of them do
not make full use of features which are beneficial to enhance
detection accuracy. Therefore, this paper proposes a method
for oriented detection in remote sensing images, which
can extract discriminative features and achieve advanced
performance.

2.2 Multi-scale feature fusion

FPN [14] develops an effective framework by fusing
features from different scales. It is well-known that FPN
significantly improves the performance of object detection
and instance segmentation and is further studied in many
works. PANet [34] shortens the pathway between the
highest level and lower levels by adding an extra bottom-
up pathway. AugFPN [35] proposes three sub-modules for
FPN and improves the fusion. NAS-FPN [36] automatically
explores feature framework topology in a scalable search
space. BiFPN [37] creates a weighted bi-directional FPN-
based structure while applying feature fusion repeatedly.
AC-FPN [38] introduces context and content mechanisms
into the FPN framework to alleviate the conflict between
receptive fields and resolution. CE-FPN [39] enhances
channel information and makes full use of semantical
features from the topmost level. DRFPN [40] plugs two
attention modules into FPN to relax the discrepancy from
feature map level and pixel level. FPT [41] adopts three
kinds of transformers, enabling them to interact features
across scales and space. We argue that the detection
accuracy can be further improved by introducing an
effective feature pyramid network. Therefore, this paper
devises a novel feature pyramid network named A-FPN
which contributes to the detection performance.

2.3 Feature modeling

Objects in aerial images often have arbitrary orientations
and various appearances. There are inherent limitations in
CNNs when modeling scale and rotation transformations
[20]. STN [42] inserts an additional learnable module which
performs spatial transformation. DCN [20] explicitly model
the deformation at the image level. ORNs [43] builds a CNN
framework with orientation information encoded explicitly
by active rotating filters. Common RoI operators (e.g.,
RoI pooling [1] and RoI align [18]) are widely used to
extract fixed-size features at the instance level, which show
poor performance in handling geometric variations in aerial
images. To enhance the capability of feature modeling, this
paper adopts deformable RoI pooling [20] to extract more
robust features in the coarse stage and RRoI align [19] to
maintain rotation invariance in the refined stage.

3Method

In this section, we firstly describe the pipeline of our
proposed RAOD in Section 3.1. Secondly, the framework of
our proposed A-FPN is presented in Section 3.2. Detailed
introductions of the coarse adjustment stage and refinement
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Fig. 1 An overview of RAOD

stage can be found in Section 3.3 and Section 3.4,
respectively. Finally, the matching strategy and loss function
are introduced in Section 3.5.

3.1 Architecture network

The architecture of our proposed RAOD is illustrated in
Fig. 1. RAOD mainly consists of a backbone network,
an Augmented Feature Pyramid Network (A-FPN), a
region proposal network (RPN) and a detection head.
Specifically, we firstly design an Augmented Feature
Pyramid Network (A-FPN) to enhance the representation
ability by augmenting and refining the multi-scale features
from the CNN backbone. The detection head consists of two
stages: a coarse stage and a refinement stage. In the coarse
stage, this paper performs deformable RoI pooling [20] on
the horizontal proposals to obtain geometric robust features
and then learns the transformation from horizontal RoIs to

rotated RoIs. In the refinement stage, RRoI align [19] is
adopted to extract rotation-invariant features from rotated
RoIs.

3.2 Augmented feature pyramid network

To address the limitations in FPN [14], this paper proposes
a novel Augmented Feature Pyramid Network (A-FPN).
The overall framework of A-FPN is illustrated in Fig. 2.
Basically, three modules are designed: Scale Transfer
Module (STM), Feature Aggregate Module (FAM) and
Feature Refinement Module (FRM). According to the
setting of FPN, the multi-scale feature maps from the
backbone used to build the feature pyramid network
are denoted as {C2, C3, C4, C5},which have channels
of {256, 512, 1024, 2048} and strides of {4, 8, 16, 32}
pixels with respect to the input image. {F2, F3, F4, F5}
represent the feature maps with the same channels of 256.

Fig. 2 The framework of A-FPN and visualizations of heatmaps
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Fig. 3 Illustration of sub-pixel convolution layer. W and H represent
width and height of the feature map, respectively. r denotes upscale
factor and equals 2 in the graph

{P2, P3, P4, P5} are the fused feature maps after the 3 × 3
convolution layer. The final outputs of our proposed A-FPN
are denoted as {M2, M3, M4, M5}.

3.2.1 Scale Transfer Module (STM)

FPN [14] reduces the channels of Ci to the same
constant 256 through a 1 × 1 convolution layer and then
upsamples the higher-level feature map (using nearest
neighbor upsampling) before element-wise addition in the
top-down path. This process leads to the loss of channel
information and aliasing effect, degrading the ability of
feature representation. This paper introduces a new fusion
module which consists of two steps. First, the channel
dimension of Fi is extended to 1024 by applying a
1 × 1 convolution layer. Second, sub-pixel convolution
[44] is performed to upsample the feature map with
lower resolution. Then, Fi+1 and Fi are merged through
element-wise summation. Sub-pixel convolution transforms
a H × W × C × r2 feature map to a feature map
of shape rH × rW × C. Mathematically, the operation
of the sub-pixel convolution layer can be described as
follow:

Fig. 4 Illustration of global
horizontal coordinate system
XOY bounding to the feature
map and local oriented
coordinate system xOy

bounding to the rotated RoI

P ixelShuff le(I )x,y,c = I�x/r�,�y/r�,c+C· mod (x,r)+C·r· mod (y,r)

(3.1)

where I represents the input feature map, (x, y) and c

indexes the spatial location and channel of the output feature
map. The hyperparameter r indicates upscale factor which
is set to 2 by default, indicating that every 4 channels are
used to expand into a single channel feature with spatial size
doubled (as shown in Fig. 3). STM enables the network to
shuffle the feature in the channel dimension and augment
the spatial information.

3.2.2 Feature aggregate module (FAM)

High-level feature maps contain strong semantic meanings
to detect small objects. Low-level feature maps are rich
in detailed content and are more suitable to detect large
objects. Features from different levels can facilitate each
other. Nevertheless, the deep semantic feature is mitigated
gradually in the top-down information flow and the feature
map on each level lacks attention to the non-adjacent level.
To make better use of features from each level, this paper
proposes Feature Aggregate Module (FAM). Firstly, the
features {P5, P3, P2} are resized to the same resolution as
P4. More specifically, we perform the nearest interpolation
on P5 and adaptive max pooling on P3, P2, respectively.
Then the integrated feature map P is obtained by calculating
averege of {P2, P3, P4, P5}:

P = 1

4

5∑

i=2

Pi (3.2)

3.2.3 Feature refinement module (FRM)

After obtaining the coarse integrated feature map from
FAM, the Feature Refinement Module (FRM) is incorpo-
rated to reduce the aliasing effect and to further strengthen
the representation ability of the model. The lightweight
global context (GC) block [45] is chosen as the attention
module because it can effectively model the global context
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Fig. 5 Differences between
smooth L1 and smooth Ln loss
functions. γ in smooth L1 is set
as 1.0

(a) forward loss functions. (b) backward deviation functions.

and capture channel-wise interdependencies. As illustrated
in Fig. 2, given the integrated feature map I ∈ R

C×H×W ,
we reduce the number of channels to 1 through a 1× 1 con-
volution layer and reshape it to B ∈ R

HW×1×1. Then soft-
max function is applied to calculate the attention weights:

Sj = exj

∑H×W
k=1 exk

(3.3)

Meanwhile, feature I is reshaped to generate feature D ∈
R

C×HW . After that, a matrix multiplication is performed
between B and D to obtain global context features G ∈
R
1×1×C . Next, G is put into the transform module to

calculate the importance of each channel, which contains
two steps: 1) 1 × 1 convolution to reduce the channels
from C to C/r , following by layernorm and ReLU; 2)
1× 1 convolution to increase the channels to C. The hyper-
parameter r is set to 4 by default. Then, feature map W ∈
R
1×1×C is obtained. In addition, broadcast element-wise

sum is applied betweenW and I to obtain the refined feature
R ∈ R

H×W×C . This process can be formulated as:

W = Conv1×1(LayerNorm(ReLU(Conv1×1(G))))

(3.4)

R = I + W (3.5)

Next, R is rescaled to the original resolution corresponding
to each level using the same but reverse operation like FAM.
Specifically, adaptive max pooling is performed on R to
obtain M ′

5 and nearest interpolation is used to get M ′
3 and

M ′
2. M ′

4 is directly copied from R. Finally, the enhanced
feature maps

{
M ′

2, M
′
3, M

′
4, M

′
5

}
are merged with the

original feature maps {F2, F3, F4, F5} to generate the final
feature maps {M2, M3, M4, M5}. For simplicity, the process
of obtaining

{
M ′

2, M
′
3, M

′
4, M

′
5

}
from R is not illustrated

in the graph. FRM is capable of exploiting global context
information while modeling interdependencies between
channels. It facilitates improving feature discriminability.

3.3 Coarse adjustment stage

As shown in Fig. 1, the detection head is conducted in
a coarse-to-fine manner, which consists of two stages:
a coarse adjustment stage and a refinement stage. We
introduce the coarse adjustment stage in this section and the
refinement stage in the next section. Commonly used RoI
operations (e.g., RoI pooling [1] and RoI align [18]) divide
proposals into equally sized sub-regions and then average
four sampling points with each sub-region, which inherently
have limitations in modeling various transformations of
objects [19]. Therefore, regular RoI operations have poor
generalization when dealing with objects of different
variations in remote sensing images. In the coarse stage,
deformable RoI pooling [20] is adopted to extract fixed
size features from horizontal proposals from RPN. Given an
input proposal of sizeW andH , it is divided intoK×K bins
(e.g., 7 × 7). The (i, j)-th bin (0 � i, j � K) is denoted
as binij . Firstly, the corresponding feature of the proposal is
obtained through the standard RoI pooling. Then, the offsets
�pij for each bin are learned through a fully connected

Table 1 Effectiveness of each
component in our proposed
method

FPN RoI pooling A-FPN Deformable RoI pooling Smooth Ln mAP(%)

baseline � � 76.14

� � 76.74

� � 77.01

our method � � � 77.04

Results are reported on DOTA-v1.0 test set. The best mAP is shown in bold
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Fig. 6 Heatmaps of the final
output feature maps at differernt
levels in FPN [14], PANet [34]
and A-FPN. The corresponding
detection results are provided in
last column

layer. The deformable RoI pooling operation for binij is
defined as follows:

y(i, j) =
∑

p∈bin(i,j)

F
(
p0 + pn + �pij

)
/nij (3.6)

where pn, p0, nij represents the spatial positions, top-left
corner and the number of pixels in the bin, respectively. And
(3.6) is implemented by bilinear interpolation. Deformable
RoI pooling [20] enables the network to adapt its feature
representation to the configuration of different objects by
deforming the pooling patterns. Then, feature maps of hor-
izontal RoIs are input into two fully connected layers to
learn the corresponding rotated bounding boxes. Specifi-
cally, we use (x, y, w, h) to represent a horizontal bounding
box and (x, y, w, h, θ) to represent a rotated bounding box
where (x, y),w, h, θ denote the bounding box’s center coor-
dinates, width, height and angle, respectively. Ranging in
[−3π/4, π/4) , θ denotes the angle between the x-axis and
the long side h of the bounding box. This paper adopts rota-
tion and scaling transformation to convert the horizontal
bounding box to the rotated bounding box. The offsets of
the rotated bounding box can be calculated as follows:

Fig. 7 Detection results of using RoI align and deformable RoI
pooling in the coarse stage

[
tx
ty

]
=

[
cos θ sin θ

− sin θ cos θ

] [
xt − xa

yt − ya

] [
1

wa
0

0 1
ha

]
(3.7)

tw = log

(
wt

wa

)
, th = log

(
ht

ha

)
(3.8)

tθ = (θt − θa) mod 2π (3.9)

where xt , xa represents the ground-truth box and anchor
box, respectively (likewise for y, w, h, θ ). The operation
mod adjusts the target of angle offset tθ in [0, 2π).

3.4 Refinement stage

The rotated bounding boxes generated in the coarse stage
are not robust enough to the arbitrary orientations in aerial
images. In the refinement stage, RRoI align [19] extracts
rotation-invariant features for the final classification and
localization. Given a feature map F ∈ R

H×W×C and
a rotated RoI (xr , yr , wr, hr , θr ), F is divided into K ×

Fig. 8 Training loss curves after using smooth Ln loss and smooth L1
loss
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Table 2 Result comparisons without any data augmentation on DOTA-v1.0 test set

Method Backbone mAP(%) PL BD BR GTF SV LV SH

CADNet [48] R101 69.90 87.80 82.40 49.40 73.50 71.10 63.50 76.60

SCRDet [7] R101 69.83 89.41 78.83 50.02 65.59 69.96 57.63 72.26

R3Det [5] R101 71.69 89.54 81.99 48.46 62.52 70.48 74.29 77.54

R3Det [5] R152 73.74 89.49 81.17 50.53 66.10 70.92 78.66 78.21

DRN [49] H104 70.70 88.91 80.22 43.52 63.35 73.48 70.69 84.94

CenterMap [50] R50 71.74 88.88 81.24 53.15 60.65 78.62 66.55 78.10

BBAVectors [29] R101 72.32 88.35 79.96 50.69 62.18 78.43 78.98 87.94

SCRDet++ [28] R152 74.41 89.20 83.36 50.92 68.17 71.61 80.23 78.53

F-O2DETR [31] R50 74.47 88.76 81.91 51.20 72.18 77.64 80.47 87.84

MEAD [51] R101 74.80 88.42 79.00 49.29 68.76 77.41 77.68 86.60

ReDet [27] ReR50-ReFPN 76.25 88.79 82.64 53.97 74.00 78.13 84.06 88.04

Oriented RepPoints [30] R101 76.21 89.21 84.22 58.42 72.05 79.81 77.66 87.35

(Ours) R50 77.04 88.79 82.02 54.10 77.13 79.08 82.90 87.67

(Ours) R101 77.13 89.01 80.84 53.78 79.05 79.15 82.98 87.46

Method Backbone TC BC ST SBF RA HA SP HC

CADNet [48] R101 90.90 79.20 73.30 48.40 60.90 62.00 67.00 62.20

SCRDet [7] R101 90.73 81.41 84.39 52.76 63.62 62.01 67.62 61.16

R3Det [5] R101 90.80 81.39 83.54 61.97 59.82 65.44 67.46 60.05

R3Det [5] R152 90.81 85.26 84.23 61.81 63.77 68.16 69.83 67.17

DRN [49] H104 90.14 83.85 84.11 50.12 58.41 67.62 68.60 52.50

CenterMap [50] R50 88.83 77.80 83.61 49.36 66.19 72.10 72.36 58.70

BBAVectors [29] R101 90.85 83.58 84.35 54.13 60.24 65.22 64.28 55.70

SCRDet++ [28] R152 90.83 86.09 84.04 65.93 60.80 68.83 71.31 66.24

F-O2DETR [31] R50 90.85 84.56 81.68 61.42 64.61 67.50 64.28 62.15

MEAD [51] R101 90.78 85.55 84.54 62.10 66.57 72.59 72.84 59.83

ReDet [27] ReR50-ReFPN 90.89 87.78 86.75 61.76 60.39 75.96 68.07 63.59

Oriented RepPoints [30] R101 90.87 87.10 84.80 61.79 67.76 73.89 73.38 54.75

(Ours) R50 90.81 87.54 86.15 65.29 66.81 76.84 70.40 60.06

(Ours) R101 90.85 87.02 86.79 62.65 62.86 77.15 72.91 64.49

‘R’ and ‘H’ in the Backbone denotes the ResNet [15] and the Hourglass network [47], respectively. The best mAP and APs are highlighted in bold

K (e.g.,7 × 7) bins. The orientation of each bin is the
same as the feature map. The width and height of each
binjj (0 � i, j < K) is wr

K
andhr

K
respectively. The

number of sampling points in each bin is N × N . As
shown in Fig. 4, this paper defines a global horizontal
coordinate system XOY bounding to the feature map and
a local oriented coordinate system xOy bounding to the
rotated RoI. The local top-left coordinate is denoted as(

iwr

K
,

jhr

K

)
. The local coordinates of sampling points in

binij are denoted as
(

jhr

K
+ (j ′+0.5)hr

KN
, iwr

K
+ (i′+0.5)wr

KN

)

(
i′, j ′ = 0, 1, . . . N − 1

)
. Each rotated bin in the feature

map is converted into the axis-aligned region using affine
transformation (scale, shift and rotate). And the local
coordinate (xo, yo) in the bin is transformed to the

corresponding global coordinate (xh, yh). This process can
be formulated as the following equation:
(

xh

yh

)
=

(
cos θ − sin θ

sin θ cos θ

)(
x0 − wr/2
y0 − hr/2

)
+

(
xr

yr

)
(3.10)

Then average pooling is performed in each binij and
the output feature is calculated by bilinear operation I as
follows:

y(i, j) = 1

N × N

∑

(x0,y0)∈bin(i,j)

I (F, τ (xo, y0)) (3.11)

RRoI align warps the rotated RoIs with arbitrary
orientations, sizes and aspect ratios into horizontal feature
maps with a fixed size of 7 × 7 and produces rotation-
invariant features in the spatial dimension. Similar to the
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Table 3 Result comparisons with data augmentations on DOTA-v1.0 test set

Method Backbone mAP(%) PL BD BR GTF SV LV SH

RoI Trans [19] R101 69.56 88.64 78.52 43.44 75.92 68.81 73.68 83.59

SCRDet [7] R101 72.61 89.98 80.65 52.09 68.36 68.36 60.32 72.41

R3Det [5] R101 73.79 88.76 83.09 50.91 67.27 76.23 80.39 86.72

R3Det [5] R152 76.47 89.80 83.77 48.11 66.77 78.76 83.27 87.84

DRN [49] H104 73.23 89.71 82.34 47.22 64.10 76.22 74.43 85.84

CenterMap [50] R101 76.03 89.83 84.41 54.60 70.25 77.66 78.32 87.19

BBAVectors [29] R101 75.36 88.63 84.06 52.13 69.56 78.26 80.40 88.06

CSL [9] R152 76.17 90.25 85.53 54.64 75.31 70.44 73.51 77.62

SCRDet++ [28] R152 76.56 88.68 85.22 54.70 73.71 71.92 84.14 79.39

OWSR [52] R101 76.36 90.41 85.21 55.00 78.27 76.19 72.19 82.14

CFA [53] R152 76.67 89.08 83.20 54.37 66.87 81.23 80.96 87.17

F-O2DETR [31] R50 79.66 88.89 83.41 56.72 79.75 79.89 85.45 89.77

ReDet [27] ReR50-ReFPN 80.10 88.81 82.48 60.83 80.82 78.34 86.06 88.31

Oriented RepPoints [30] R101 78.12 88.72 80.56 55.69 75.07 81.84 82.40 87.97

(Ours) R50 78.76 88.63 86.49 56.74 76.64 77.71 84.76 88.09

(Ours) R101 79.78 87.49 86.74 60.51 76.51 77.10 85.03 88.72

Method Backbone TC BC ST SBF RA HA SP HC

RoITrans [19] R101 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67

SCRDet [7] R101 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21

R3Det+ [5] R101 90.78 84.68 83.24 61.98 61.35 66.91 70.63 53.94

R3Det [5] R152 90.82 85.38 85.51 65.67 62.68 67.53 78.56 72.62

DRN [49] H104 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48

CenterMap [50] R101 90.66 84.89 85.27 56.46 69.23 74.13 71.56 66.06

BBAVectors [29] R101 90.87 87.23 86.39 56.11 65.62 67.10 72.08 63.96

CSL [9] R152 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93

SCRDet++ [28] R152 90.82 87.04 86.02 67.90 60.86 74.52 70.76 72.66

OWSR [52] R101 90.70 87.22 86.87 66.62 68.43 75.43 72.70 57.99

CFA [53] R152 90.21 84.32 86.09 52.34 69.94 75.52 80.76 67.96

F-O2DETR [31] R50 90.84 86.15 87.66 69.84 68.97 78.83 78.19 70.38

ReDet [27] ReR50-ReFPN 90.87 88.77 87.03 68.65 66.90 79.26 79.70 74.67

Oriented RepPoints [30] R101 90.80 84.33 87.64 62.80 67.91 77.69 82.94 65.46

(Ours) R50 90.85 88.27 85.12 64.90 65.79 78.43 76.41 72.50

(Ours) R101 90.88 88.76 85.74 69.85 64.87 78.67 78.26 77.51

‘R’ and ‘H’ in the Backbone denotes the ResNet [15] and the Hourglass network [47]. The best mAP and APs are highlighted in bold

coarse adjustment stage, then two fully connected layers are
added followed by two branches for final classification and
regression.

3.5 Oriented object detection

3.5.1 Matching strategy

This paper adopts the IoU as the criteria when matching
between the rotated bounding box and the ground truth. The
rotated bounding box can be assigned to be positive if its

IoU is over the threshold of 0.5. We calculate the IoU within
polygons.

3.5.2 Loss function

Multi-task loss is adopted both in the coarse adjustment
stage and refinement stage, which consists of classification
loss and regression loss. For each RRoI (x, y, w, h, θ), the
loss function is defined as:

L
(
p, u, t∗, t

) = Lcls(p, u) + λuLreg

(
t∗, t

)
(3.12)
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Table 4 Result comparisons DOTA-v1.5 test set without any data augmentation

Method mAP(%) PL BD BR GTF SV LV SH TC

FR-O+RT [54] 65.0 71.9 76.1 51.9 69.2 52.1 75.2 80.7 90.5

(Ours) 65.5 71.5 75.5 50.0 69.6 52.0 75.1 80.3 89.7

Method - BC ST SBF RA HA SP HC CC

FR-O+RT [54] - 78.6 68.3 49.2 71.7 67.5 65.5 62.2 10.0

(Ours) - 77.5 68.7 51.5 70.0 72.8 64.1 59.7 19.7

The best mAP is shown in bold

where u indicates the class label (u = 1 for object and
u = 0 for background), t = (

tx, ty, th, tw, tθ
)
represents

the predicted rotated bounding box and
(
t∗x , t∗y , t∗h, t∗w, t∗θ

)

denotes the ground-truth. The hyperparameter λ controls the
trade-off and is set to 1 by default. The classification loss
Lcls is implemented by cross-entropy loss:

Lcls(p, u) = − logpu (3.13)

where pu denotes the probability over classes. And smooth
Ln loss [21] is adopted for the regression:

Lreg

(
t∗, t

) =
∑

i /∈{x,y,h,w,θ}
smoothLn

(
t∗i , ti

)
(3.14)

in which

smoothLn(x) = (|x| + 1) ln(|x| + 1) − |x| (3.15)

And the deviation function of smooth Ln is calculated as
follows:

∂smoothLn(x)

∂x
= sign(x) · ln(sign(x) · x + 1) (3.16)

Note that both (3.15) and (3.16) are continuous functions.
Figure 5 illustrates the differences between smooth L1 and
smooth Ln loss functions. The curve of smooth Ln function
has better smoothness. Smooth Ln loss function has more
resistance to outliers and can adjust regressive steps better.

Table 5 Result comparisons on DOTA-v1.5 test set with data augmentations

Method (Team Name) mAP(%) PL BD BR GTF SV LV SH TC

peijin 71.6 80.9 83.6 55.1 70.7 59.9 76.4 88.3 90.9

CSULQQ 72.3 87.8 83.6 56.7 74.4 63.2 71.0 87.8 90.8

AICyber 74.7 88.4 85.4 56.7 74.4 63.9 72.7 87.9 90.9

OWSR [52] 74.9 - - - - - - - -

FR-O+RT [54] 77.6 87.5 84.3 62.2 79.8 67.3 83.2 89.9 90.9

FR-O+RT* [54] 73.6 80.6 84.4 57.3 76.8 52.7 81.4 89.2 90.9

(Ours) 74.7 80.9 86.5 61.1 74.3 58.0 83.1 89.6 90.9

Method (Team Name) - BC ST SBF RA HA SP HC CC

peijin - 79.2 78.3 59.1 74.8 74.1 74.9 59.8 39.5

CSULQQ - 84.6 84.0 67.8 75.5 67.4 71.2 68.8 22.5

AICyber - 86.3 85.0 68.9 76.0 74.1 72.9 73.4 37.9

OWSR [52] - - - - - - - - -

FR-O+RT [54] - 83.9 77.7 73.9 75.3 78.6 77.1 75.2 54.8

FR-O+RT* [54] - 83.3 73.4 69.1 73.0 77.8 75.6 74.5 37.6

(Ours) - 86.4 73.7 66.6 72.7 78.2 75.4 76.1 41.4

The best mAP is shown in bold. Note that we report the results of single model of OWSR [52] for fair comparisons. * means the results of using
our experimental settings and the same data augmentation strategies as ours
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4 Experiments and analysis

4.1 Datasets

To comprehensively evaluate the effectiveness of our
proposed oriented object detector, extensive experiments are
conducted on DOTA [23] and HRSC2016 [24].

DOTA has two released version: DOTA-v1.0 and DOTA-
v1.5. DOTA-v1.0 is a large-scale dataset for object detection
in aerial images, which is comprised of 15 categories,
12,806 images and 188,282 instances labeled by an
arbitrary quadrilateral. The short names for categories are
defined as (abbreviation-full name): PL-Plane, BD-Baseball
diamond, BR-Bridge, GTF-Ground field track, SV-Small
vehicle, LV-Large vehicle, SH-Ship, TC-Tennis court, BC-
Basketball court, ST-Storage tank, SBF-Soccer-ball field,
RA-Roundabout, HA-Harbor, SP-Swimming pool, and HC-
Helicopter. Objects in the dataset exhibit various shapes,
orientations and scales. The training set, validation set
and test set account for 1/2, 1/6 and 1/3 of the whole
dataset, respectively. DOTA-v1.5 is an upgraded version of
DOTA-v1.0 which is released for DOAI Challenge 20193.
DOTA-v1.5 contains 16 categories and 402,089 instances.
DOTA-v1.5 adds a new category of Container Crane (CC)
and additionally annotates rather small objects about or
below 10 pixels, which increase the difficulty of detection.

The training set and validation set are used for training
and the test set is adopted for testing. Due to the size of
images in DOTA-v1.0 and DOTA-v1.5 ranges from around
800 × 800 to 4, 000 × 4, 000 pixels, we crop the images
into 1, 024 × 1, 024 patches with a stride of 500. For
multi-scale data augmentation, multi-scale data are prepared
at three scales {0.5, 1.0, 1.5} and rotation augmentation is
performed randomly from 4 angles {0, 90, 180, 270}.

HRSC2016 is a challenging dataset for ship detection, which
contains 1061 images with the size ranging from 300× 300
to 1, 500 × 900 and over 20 categories of ships in diverse
appearances. The training, validation and test set include
436 images, 181 images and 444 images, respectively. This
paper uses training set and validation set for training, test
set for testing. All the images are resized to (800, 512).
Random horizontal flipping is adopted during training.

4.2 Implementation details

Experiments are implemented on Pytorch and MMDetec-
tion [46]. All the models are trained for 12 epochs on
DOTA-v1.0 and DOTA-v1.5, 36 epochs on HRSC2016. The
general training schedule in MMdetection is adopted. The
stochastic gradient descent (SGD) optimizer is used with an
initial learning rate of 0.01, and the learning rate decreases
by 0.1 after 8 and 11 epochs. The momentum and weight

Fig. 9 Qualitative comparisons
between our method and the
baseline on the test set of
DOTA-v1.0
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Fig. 10 Visualization results on
the test set of DOTA-v1.5

decay are 0.9 and 0.0001, respectively. We use 1 RTX Titan
GPU with a batch size of 2 for training. It is worth not-
ing that only three horizontal anchors with aspect ratios
of {1/2, 1, 2} are set, avoiding a large number of anchors
caused by adding preseted angles. For training our model,
512 proposals are sampled randomly with a 1 : 3 positive to
negative ratio. For testing, there are 10,000 proposals (2,000
at each feature level) before NMS and 2,000 proposals after
NMS. For evaluation, the mean Average Precision (mAP)
is adopted as the primary metric. The results of DOTA-
v1.0 and DOTA-v1.5 reported are obtained by submitting
predictions to the official DOTA evaluation server 1.

4.3 Ablation studies

To evaluate the effectiveness of our proposed method, a
series of ablation experiments are performed on DOTA-
v1.0 test set. This paper uses RoI-Transformer [19] as
the baseline. RoI-Transformer is a two-stage method for
oriented detection. For a fair comparison, we reproduce
RoI-Transformer and obtain 76.14% mAP, which is higher

1https://captain-whu.github.io/DOTA/

than the official one. ResNet-50 [15] is used as the backbone
and all the experimental settings are consistent as those
reported in Section 4.2. No data augmentation is used in this
section. Comparing with the baseline method, RAOD is able
to improve the expressiveness of multi-scale features and
model geometric transformations more effectively, which
are important for detecting arbitrary-oriented objects in
remote sensing images. Effectiveness of each component is
detailed in Sections 4.3.1, 4.3.2 and 4.3.3, respectively.

4.3.1 Effectiveness of A-FPN

As shown in Table 1, the mAP is 76.14% with FPN and
76.74% with our proposed A-FPN. Figure 6 shows the
heatmaps of the final output feature maps at different levels
in FPN [14] , PANet [34] and A-FPN, respectively. It can be
observed that A-FPN reduces much redundant information
brought by direct fusion in the top-down pathway and
strengthens the features at each level, increasing the saliency
of the object areas. Compared with FPN and PANet, the
boundaries are clearer in the heatmaps of A-FPN. This also
validates that extracting discriminative features can help to
improve the final detection results effectively.
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4.3.2 Effectiveness of deformable RoI pooling

Table 1 shows the results of using RoI align [18]
and deformable RoI pooling [20] in the coarse stage,
respectively. It can be seen that deformable RoI pooling
gains about 0.27% improvement in mAP and enables
the network to capture the boundary of the object more
precisely compared to RoI align (as shown in Fig. 7). And
the results indicate that geometry transformation modeling
contributes to the localization performance.

4.3.3 Effectiveness of smooth Ln

As shown in Table 1, with the participation of smooth Ln

loss, mAP achieves 77.04%. Figure 8 shows the training loss
after adopting smooth Ln loss and smooth L1 loss. Both the
mean and variance of the smooth Ln loss are lower than the
smooth L1 loss, which demonstrates that smooth Ln loss
achieves a more stable training and enables the model to
better converge.

4.4 Comparisons with state-of-the-art methods

In this section, we further compare our proposed method
with the state-of-the-art algorithms on three benchmark
datasets DOTA-v1.0, DOTA-v1.5 and HRSC2016. First,
experiments without any data augmentations are conducted.
In addition, experiments on data augmentations of multi-
scale training and rotation training are also carried out for
further comparisons. Tables 2 and 3 shows comparisons
without any augmentation and with augmentation on test set
of DOTA-v1.0, respectively. Similarly, the corresponding
comparisons on test set of DOTA-v1.5 are shown in Tables 4
and 5.

4.4.1 Visualizations

Figure 9 compares the visual results between the baseline
and our proposed method on the test set of DOTA-v1.0.
It is observed that RAOD achieves better performance in
detecting densely packed small objects and precisely locate
the instances with sharp variety on orientation and aspect
ratio.

4.4.2 Results on DOTA-v1.0

Table 2 compares our proposed single-scale RAOD with
other state-of-the-art algorithms. As for the single-scale
training, RAOD obtains 77.04% mAP with ResNet-50
backbone, which outperforms the previous best single-
scale model by 0.37% and most multi-scale methods.
With a stronger ResNet-101 backbone, RAOD achieves the
best result of 77.13%, which surpasses the previous best

Table 6 Result comparisons with the state-of-the-art methods on the
test set of HRSC2016

Method Backbone mAP(%)

RRPN [56] R101 79.08

R2PN [57] V16 79.60

RoI Trans [19] R101 86.20

Gliding Vertex [25] R101 88.20

R3Det [5] R101 89.26

RetinaNet-DAL [58] R101 89.77

OPLD [59] R50 88.44

DRN [49] H104 92.70*

BBAVectors [29] R101 88.60

MEAD [51] R101 89.83

Ours R50 89.71/94.82*

Ours R101 89.92/94.28*

‘V’ in the Backbone denotes the VGG [55]. * indicates the results
evaluated under VOC2012 metrics while other methods are evaluated
under the VOC2007 metrics. The best mAP is shown in bold

single-scale model by 0.46%. In addition, RAOD obtains
the best results on ground field track (GTF), storage tank
(ST) and harbor(HA). The results on plane (PL), small
vehicle (SV), ship (SH), tennis court (TC) and basketball
court (BC) are silghtly lower than the best results and
outperformmost of other methods. In the case of multi-scale
training and testing (as shown in Table 3), RAOD obtains
advanced performance of 78.76% mAP with ResNet-50
backbone and second-best result of 79.78% mAP with
ResNet-101 backbone. For objects with a large aspect ratio,
such as bridge (BR) and harbor (HA), RAOD achieves the
second-best and the third-best performance with 60.51%
and 78.67%, respectively. For the helicopter (HC) with
various appearances and irregular shapes, our method
achieves the best result of 77.51%, which surpasses the
second place over 2.84%. Those comparisons verify the
superiority of RAOD.

Fig. 11 Precision-recall curves of our method and baseline on the
testing set of HRSC2016
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Fig. 12 Qualitative comparisons
between the baseline and the
proposed RAOD on HRSC2016
test set

4.4.3 Results on DOTA-v1.5

DOTA-v1.5 is employed for the evaluation of detection per-
formance in Detecting Objects in Aerial Images Challenge
2019 (DOAI2019), which is a much more challenging task
in oriented object detection of aerial images. For fair com-
parisons, all the results are quoted in one decimal place.
Compared with the baseline method FR-O+RT reported in
[54], our model with the single-scale setting has improved
by 0.5% in mAP (as shown in Table 4), which demonstrates
the effectiveness of our method. Besides, Table 5 shows
the comparisons in the setting of data augmentations. To
our best knowledge, most of the competitors in DOAI2019
adopt multiple augmentation strategies for better perfor-
mance, such as multi-scale training and testing, rotation
training and testing, class balance resampling and model
ensembling. Most of them do not report detection results
without data augmentations. However, this paper only

adopts multi-scale training and rotation training for data
augmentations. So the comparisons between our RAOD and
other competitors are unfair. For fair comparisons, we reim-
plement FR-O+RT [54] under our experimental setting and
use the same data augmentation strategies as ours. As shown
in Table 5, FR-O+RT [54] obtains 73.6% on mAP, which is
lower than our proposed RAOD by 1.1%. This paper pays
more attention to the effectiveness of the model itself and
these comparisons validate that our method can achieve bet-
ter or similar accuracy without many data augmentations.
When checking the AP on each category, RAOD ranks first
in baseball diamond (BD), tennis court (TC), basketball
court (BC) and helicopter (HC). It demonstrates that RAOD
outperforms other methods on categories with irregular lay-
outs and complex backgrounds. However, our model fails to
achieve high performance on container (CC) and small vehi-
cle (SV) whose mAP is 41.4% and 58.0%, respectively. We
consider it is due to dense distributions and small sizes in

Fig. 13 Ship detection results
on the HRSC2016 test set
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those categories. Therefore, there is still room for progress
in our method, which is one part of our follow-up research.
Figure 10 visualizes the detection results on DOTA-v1.5.

4.4.4 Results on HRSC2016

Table 6 compares our proposed method with other
state-of-the-art methods on the test set of HRSC2016.
To make a comprehensive comparison, our method is
evaluated under the VOC2007 metric and the VOC2012
metric. Our method achieves leading performance in mAP
by 89.71% under VOC2007 metric and 94.82% under
VOC2012 metric with ResNet-50 backbone.With a stronger
backbone ResNet-101, our method obtains 89.92% and
94.28% under VOC2007 metric and VOC2012 metric,
respectively. Both the results outperform other methods.
To further verify the effectiveness of our method, we plot
the precision-recall curve in Fig. 11. Figure 12 shows
visual comparisons between the baseline and our proposed
method. Some detection results are shown in Fig. 13. These
results demonstrate that our proposed method localizes
objects more accurately, especially for strip-like instances
with arbitrary orientations despite the low luminosity
and resolution. And RAOD detects fewer false positive
boxes.

5 Conclusion

This paper presents a refined two-stage detector with
augmented features named RAOD for oriented object
detection. The key idea of our proposed A-FPN is to better
generate hierarchical discriminative features and enhance
the representation ability of the model. Then we adopt
a coarse-to-fine manner in the detection head. In the
coarse stage, geometry-robust features are extracted from
the horizontal bounding boxes and then are transformed
into oriented ones. In the refinement stage, rotation-
invariant features are obtained for detecting rotated objects
more accurately in remote sensing images. Extensive
experiments on DOTA-v1.0, DOTA-v1.5 and HRSC2016
verify the superiority of our method in the task of
oriented object detection in remote sensing images. Our
proposed method not only shows advanced performances
on the aforementioned popular datasets in aerial images
but also outperforms on some categories with arbitrary
orientations, large aspect ratios and complex backgrounds.
In future work, we aim to reduce the parameters of the
network and achieve a better trade-off between the detection
speed and accuracy. In addition, we will explore some
strategies to boost the performance on those categories
with relatively low precisions (e.g., container and small
vehicle).
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