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Abstract

Scene text image super-resolution (STISR) has recently received considerable attention.
Existing STISR methods are applicable to the situation that all the LR-HR pairs are avail-
able. However, in real-world scenarios, it is difficult and expensive to collect ground-truth
HR labels and align them with LR images, and thus it is essential to find a way to implement
weakly supervised learning. We investigate the STISR problem in the situation that only a
subset of HR labels is available and design a weak supervision framework using coarse-
grained text labels named TLWSR, which combines incomplete supervision and inexact
supervision. Specifically, a lightweight text recognition network and connectionist tempo-
ral classification loss are used to guide the super-resolution of text images during training.
Extensive experiments on the benchmark TextZoom demonstrate that TLWSR generates
distinguishable text images and exceeds the fully supervised baseline TSRN in boosting
text recognition accuracywith only 50% HR labels available. Meanwhile, TLWSR can be
applied to different super-resolution backbones and significantly improves their perfor-
mance. Furthermore, TLWSR shows good generalization capability to low-quality images
on scene text recognition benchmarks, which verifies the effectiveness of this framework.
To the authors’ knowledge, this is the first work exploring the problem of STISR in weakly
supervised scenarios.

1 INTRODUCTION

Scene text recognition (STR) has been widely used in vari-
ous domains such as text retrieval [1], license plate recognition
[2], signature identification [3], autonomous driving [4]. With
the rapid development of deep learning, text recognizers have
achieved remarkable advancements in recent years by exploit-
ing visual feature extraction [5–7], language modelling [8–11],
loss function [12, 13], etc. However, how to effectively recognize
low-resolution (LR) text images under real-world circumstances
remains challenging [14].

Single image super-resolution (SISR) is an important tech-
nology in low-level computer vision, aiming at estimating a
high-resolution (HR) image from its given LR counterpart.
Recent studies have witnessed the promising improvement in
SISR [15–20].

As a subfield of SISR, the purpose of scene text image super-
resolution (STISR) is to improve the visual quality of LR text
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images by accurately reconstructing the blurry and illegible char-
acters. It would be promising to introduce STISR methods as
a preprocessor to enhance text recognition [14, 21]. STISR
has been an active research topic recently. Early STISR works
[22–24] are based on synthetic data where LR images are usu-
ally generated by applying uniform degradation (e.g. bicubic
down-sampling) from HR images. Compared to the promis-
ing SR results on synthetic text images, their SR performances
would drop sharply on real-world text images due to the domain
gap between real-world and synthetic data. The authors in [14]
constructs the first real-world paired STISR dataset named
TextZoom where LR–HR pairs are collected by different cam-
eras with different focal length. Figure 1 shows samples of
real-world LR images and synthetic LR images, which are bicu-
bic downsampled from HR images in TextZoom. It is obvious
that recovering real-world scene text LR images is more chal-
lenging than synthetic LR images. Meanwhile, [14] designs Text
Super-Resolution Network (TSRN) for STISR. Inspired by the
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FIGURE 1 Comparisons between synthetic LR images, real-world LR images and HR images in TextZoom. HR, high resolution; LR, low resolution.

FIGURE 2 Illustration of misalignment between real-world
low-resolution–high-resolution (LR-HR) pairs.

success of TSRN, many researchers have started to investigate
real-world STISR to improve the quality of LR text images,
thus improving recognition accuracy. However, all of the cur-
rent works concentrate on recovering LR scene text images in a
fully supervised manner, that is, with all the LR-HR pairs being
used [25–29].

Despite the fact that real-world SR datasets are more prac-
tical in reality than synthetic SR datasets, there still exist some
limitations. First, as depicted in Figure 2 , there always exists
misalignment of pixels between real-world LR-HR pairs due to
lens distortion and optical center shift when switching focal
lengths, which would introduce blurry artifacts in the recon-
structed SR images. Second, in previous non-real-world STISR
tasks, HR images are the source used to synthesize LR images,
and therefore, the cost of constructing datasets is relatively
low. Nonetheless, real-world LR-HR pairs are often captured
by adjusting the focal length of different digital single lens
reflex (DSLR) cameras [30, 31], which is expensive and time-
consuming. Recently, many researchers have proposed some
methods to overcome the absence of LR-HR image pairs
[32–34]. Nevertheless, these methods aim at natural images,
which cannot apply to STISR directly due to the text-specific
characteristics in text images. This paper focuses on STISR
under the weakly supervised case aiming at reducing the reliance
upon HR labels. The author in[35] classifies weak supervi-
sion learning into three typical types: incomplete supervision
where only a subset of labels are given, inexact supervision
where only coarse-grained labels are available and inaccurate
supervision where the labels are not always ground-truth. In
reality, the three types often occur simultaneously. Our pro-

posed TLWSR is actually a framework combining incomplete
and inexact supervision. To our knowledge, this is the first work
to perform weakly supervised super-resolution on real-world
scene text images.

As depicted in Figure 3a, the fully supervised STISR man-
ner employs all the ground-truth HR labels to calculate L2 loss
between SR images and HR images. Considering that the text in
the text images can be regarded as a natural coarse-grained label
and is much easier to obtain compared with fine-grained HR
labels, it is feasible and worth exploring to use the text label as a
weak supervision signal to train the STISR model, as shown in
Figure 3b. Specifically, the reconstructed SR image produced by
the SR model is directly fed into a text recognizer (CRNN) [12].
Then, the text prediction result and the corresponding text label
are supervised by connectionist temporal classification (CTC)
loss [12], which can be back-propagated to guide the training
of the SR network. Meanwhile, only a subset of HR labels is
used to calculate L2 loss. Our major contributions are listed as
follows:

∙ To reduce dependencies on expensive and rare paired
real-world text images, we propose a novel weak super-
vision framework named TLWSR. This is the first study
investigating weak supervision in STISR.

∙ Given a subset of HR labels in the training set, this paper
proposes a weak supervision framework which incorporates
a text recognition network into the super-resolution net-
work and utilizes CTC loss to facilitate generating sharp and
identifiable text images for text recognition.

∙ Extensive experiments on TextZoom demonstrate that
our weakly supervised framework with 50% HR labels
used outperforms the fully supervised baseline TSRN
and can be applied to different super-resolution back-
bones, bringing obvious improvements. In addition, it can
be well generalized to images on scene text recognition
benchmarks.

The overview of the paper is organized as follows. Section 2
introduces the related work in scene text recognition, scene text
image super resolution and weak supervised learning. Then,
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2782 SHI ET AL.

FIGURE 3 Schematic illustration of STISR networks dividing into two manners. HR, high resolution; LR, low resolution; SR, super resolution.

the proposed weak supervision frameworks are described in
Section 3. Next, comprehensive experiments are conducted in
Section 4. Finally, Section 5 concludes the whole work.

2 RELATED WORK

2.1 Scene text recognition (STR)

Scene text recognition (STR) is a widely concerning task in
the field optical character recognition (OCR), aiming to iden-
tify text in natural images. Traditional text recognition methods
[36, 37] mainly adopt a bottom-up strategy, that is, localizing
individual characters using sliding window and then grouping
them into words or sentences with lexicon search or graph
models. These traditional methods show poor performances
when confronted with some difficulties, that is, low-quality
images, irregular text appearance and complex backgrounds.
Benefiting from the development of deep neural networks, STR
methods further progress into a top-down manner where text
sequences are regarded as a whole and end-to-end predicted.
Based on the kind of loss function, existing STR methods can
be broadly categorized into CTC-based and attention-based
methods [9]. CTC-based methods [12, 38] combine convo-
lutional neural network (CNN) and recurrent neural network
(RNN) to extract visual features and model the semantic infor-
mation, respectively. Then, CTC loss is employed to align the
predicted sequence and ground-truth sequence. ASTER [39]
and MORAN [40] are representative attention-based methods,
which rectify irregular text images and then utilize an attention-
based bidirectional decoder to predict the character sequence.
This paper employs CRNN and CTC loss to assist the recon-
struction of SR text images. Experiments prove that our method
can reduce dependencies on HR labels and exhibit superior per-
formance compared with fully supervised methods when 50%
HR images are available.

2.2 Scene text image super resolution
(STISR)

The purpose of STISR is to improve the readability of texts
on LR images by recovering the blurry text images. TextSR
[22] proposes an end-to-end network that utilizes the feed-
back of the text recognition network to guide the training of
the super-resolution network. PlugNet [23] combines a plug-
gable super-resolution unit to recognize low-quality scene text
which improves recognition accuracy significantly. The authors
in[24] enhance the original cGAN model by introducing effec-
tive channel and spatial attention mechanisms, which enables
the SR model to achieve better text image super-resolution
results. The above studies focus on synthetic text data, which
cannot be generalized to complex real scenarios. The authors
in[14] build TextZoom, which is a real-world STISR dataset,
and propose a TSRN using sequential residual block to cap-
ture sequential information and boundary-aware loss to sharpen
the character boundaries. TSRGAN [25] introduces genera-
tive adversarial network (GAN) to prevent the SR network
from generating over-smoothed results and incorporate triplet
attention into the SR module for better representational abil-
ity. STT [26] proposes a text-focused super-resolution network
to highlight the position and the content of each character.
PCAN [27] designs effective attention mechanisms, aiming to
learn sequence-dependent features and extract high-frequency
information. TPGSR [28] employs a text prior generator to
extract categorical probability distribution as guidance for the
text image reconstruction process. Text Gestalt [29] pre-trains a
text recognizer to highlight the stroke-level details. All of the
previous works concentrate on recovering SR text images in
a fully supervised manner, that is, with all the LR-HR pairs
being used. As we know, this paper is the first attempt to
perform weakly supervised super-resolution on real-world text
images.
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SHI ET AL. 2783

2.3 Weakly supervised learning

Though current techniques have achieved great success, it is
noteworthy that in many tasks it is difficult to get strong super-
vision information like fully ground-truth labels due to the
high cost of the data-labelling process. Thus, it is desirable for
machine-learning techniques to work with weak supervision
[35]. Recently, many researchers have proposed SR methods
to overcome the absence of HR-LR image pairs. The authors
in[32] propose a two-stage algorithm which first employs a high-
to-low network to learn how to degrade high-resolution images
using unpaired HR-LR images and then use the output of this
network to train a low-to-high network. The authors in[33]
design a cycle-in-cycle network (CinCGAN), which contains
two coupled CycleGANs to learn the mapping from degraded
LR images to clean LR images and clean LR images to clean
HR images, respectively. In order to reduce the dependence of
existing STISR methods on expensive and rare paired real-world
image super-resolution datasets, this paper concerns the situa-
tion where only a subset of HR ground-truths are given, which
is more suitable and practical in real-world scenarios because
there is often a lack of HR image corresponding to the given
LR one.

3 METHOD

In this section, the detailed introductions of the overall weak
supervision framework TLWSR can be found in Section 3.1.
Then, Sections 3.2 and 3.3 introduce the architecture of super-
resolution network and text recognizer, respectively. Finally, text
recognition loss and overall loss function are introduced in
Section 3.4.

3.1 Overall framework

Aiming at the situation where only a subset of HR ground-
truths is available, this paper proposes a weak supervision
STISR framework using text labels , namely, TLWSR. Figure 4
depicts the overall architecture. Moreover, the SR image gener-
ated by the SR model is input into a text recognition network,
which predicts a probability map of the character sequence. In
this case, low-level supervision is provided by reconstruction
loss between a small number of HR labels and SR images. Mean-
while, text recognition loss is computed using all the text labels
provided by TextZoom dataset.

3.2 Super-resolution network

As shown in Figure 4, general super-resolution network based
on convolutional neural networks (CNNs) can be divided into
three main components, that is, a shallow feature extraction
module (head), deep feature extraction module (body) and a
HR image reconstruction module (tail) [18]. The input low-

resolution image is denoted as ILR ∈ ℝh×w×c , where h, w and c
are the height, width and channel number of the image. A con-
volutional layer Hhead is employed to extract shallow features
Xs ∈ ℝh×w×c from ILR as:

Xs = Hhead (ILR )

The deep feature extraction module usually consists of a
series of stacked SR modules which depend on different SR
backbones, such as the residual block in EDSR [41], resid-
ual dense block (RDB) in RDN [42], sequential residual block
(SRB) in TSRN [14]. Considering our proposed weak supervi-
sion framework is a general framework that can be applied to
different SR backbones, we do not depict the body in detail in
Figure 2. The process is formulated as:

Xd = Hbody (Xs ).

Then, a global residual path is added to aggregate shallow fea-
tures Xs and deep features Xd . Finally, the SR image ISR is
reconstructed as follows:

ISR = Htail (Xs + Xd ),

where Htail is the reconstruction methods, for example, pixel-
shuffle operation followed by a convolutional layer.

Previous methods optimize the parameters of SR model
using all of the HR images, bringing about high cost of the
data-labelling process. This paper computes loss between a
subset of HR-LR pairs, which is more practical in reality. Con-
sidering TSRN [14] is the most commonly used text image
super-resolution baseline network, we adopt TSRN as the
super-resolution network in our proposed framework as default.

3.3 Text recognition network

This paper employs CRNN [12] as the text recognition network,
which is a widely used lightweight network. Before feeding into
CRNN [12], ISR is resized to H ×W using bicubic interpo-
lation where H, W is set to 32, 100 following [12]. First, the
ConvNet based on VGG architecture [43] extracts visual fea-

ture, denoted by Fv ∈ ℝ
1×

W

4
×D (D = 512). Then, sequential

features Fs ∈ ℝ
W

4
×D are obtained after the map-to-sequence

operation on Fv . Thereafter, a two-layer bidirectional LSTM [44]
with 512 hidden units conducts on the sequential features to
capture contextual information from both directions. Finally,
a linear layer and a softmax function are utilized, generating a
per-frame probability map P ∈ ℝT ×C where the horizontal axis
indicates the sequence in left-to-right order and the vertical axis
represents the categories of the alphabet set in the order of “a”
to “z”, “0” to “9” and blank “-”. The length T and category C of
alphabet set are set to 25 and 37 as default, respectively. Finally,
CTC is adopted for character alignment and generating the final
sequence, which will be given details in the following section.
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2784 SHI ET AL.

FIGURE 4 Diagram of TLWSR.

3.4 Loss function

3.4.1 Text recognition loss

The length of text labels is variable while the output of many
text recognition networks is fixed length sequences. These
methods usually require transcription layers to convert the fixed
length output into a variable length prediction string, and then
apply non-aligned classification loss functions. Here, the CTC
loss used in CRNN [12] is adopted as the text recognition loss.

Input text images y into CRNN. The output is a sequence
of T frames in length, denoted as z = (z1, z2, … , zT ), where
zt = (zt

1, z
t
2, … , z

t
C

) and C represents the number of character
categories. Zt

i represents the probability that the t-th frame is
predicted to be the character with category index i, and the

sum of probabilities of all categories
∑C

i=1 Zt
i = 1. Generally,

C = 37, including 26 English letters, 10 Arabic numerals and
the empty character “-”. Select a character for each frame, and
the string formed is called a path 𝜋. Assuming that the output at
each time is independent, the probability of the path is defined:

p(𝜋 ∣ y) =
T∏

t=1

zt
𝜋t
, (1)

where 𝜋t represents the category index of the character corre-
sponding to the path 𝜋 at frame t. Then define B-transform that
combines adjacent identical characters and deletes empty char-
acters on a string. Take the following equation as an example:

B(−stta − t − e) = state. (2)

The last transcription layer of CRNN is realized by B-
transform on the path with the highest probability. Obviously,
the B-transform is a many-to-one mapping. For a text label,
there are multiple corresponding paths. All reachable paths can

be listed through a dynamic programming algorithm. Given the
input of CRNN y, the probability that the final output predic-
tion is label l equals to the sum of the probabilities of all paths
that can be converted into label l by B-transform, as shown in
the following equation (3):

p(l ∣ y) =
∑

B(𝜋)=l

p(𝜋 ∣ y). (3)

Take the negative logarithm of the probability and average it
on a training batch, that is the text recognition loss, as shown in
Equation (4):

Lctc = −
1
N

N∑
i=1

ln
(

p(li ∣ yi )
)
= −

1
N

N∑
i=1

ln
(

p(li ∣ G (xi ))
)
,

(4)
where N represents the number of images contained in a train-
ing batch, and yi and li represent the text image to be recognized
and its corresponding text label, respectively. In the proposed
weak supervision framework, the input of CRNN yi is the out-
put of the SR model G (xi ), where xi represents the LR image
to be super-resolved.

3.4.2 Overall loss

In the proposed weak supervision framework TLWSR, two
types of loss functions are used, namely, the reconstruction
loss Lrec defined by the mean square error and the text recog-
nition loss Lctc introduced in Section 3.4.1. The overall loss is
calculated as :

L = Lrec + 𝜆 ⋅ Lctc

=

𝛼⋅N∑
i=1

‖‖ŷi − G (xi )‖‖2 − 𝜆

N∑
i=1

ln
(

p(li ∣ G (xi ))
) (5)
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SHI ET AL. 2785

ALGORITHM 1 TLWSR.

Input: LR training images (x1, x2, … xN ), partial HR ground-truths
(ŷ1, ŷ2, … ŷ𝛼N ), text labels (l1, l2, … lN ), batch size Nb, training epochs Ne

Output: 𝜃G , the parameters of the SR network G

1: for i = 1: Ne do

2: for j = 1: Nb do

3: Input LR images x to the super-resolution network G

4: Input SR images y to the recognition network R

5: Compute loss according to Equation (5)

6: Update parameters of G and R

7: end for

8: end for

9: return G

where N represents the number of LR images in a training
batch and xi represents the LR image. ŷi and li represent the
HR ground-truth and the text label of the LR image, respec-
tively. Partial LR images with HR labels are used in Equation (5),
where 𝛼 represents the ratio of HR labels. 𝜆 represents the coef-
ficient of text recognition loss and is used to balance the weight
of two loss items. The training process of TLWSR is presented
in Algorithm 1.

4 EXPERIMENTS AND ANALYSIS

4.1 Datasets

TextZoom The images in TextZoom [14] come from two real-
world SISR datasets, namely, RealSR [30] and SRRAW [31].
The training set contains 17,367 LR-HR image pairs and cor-
responding text labels. The testing set can be divided into
three subsets. The easy, medium and hard subset contains 1619,
1411 and 1343 LR-HR image pairs and corresponding text
labels, respectively.

Scene text recognition datasets In addition to conduct-
ing experiments on TextZoom, we also verify the robustness
of TLWSR on several scene text recognition datasets, includ-
ing ICDAR 2013 (IC13), ICDAR 2015 (IC15), Street View Text
Perspective (SVTP) and CUTE80 (CUTE). IC13 contains 1095
testing images. Most of the images are clear and some of them
are under uneven illumination. IC15 consists of 1811 images
and many images are blurry and rotated, which are challenging
for existing recognition methods. SVTP has 649 images for eval-
uation, most of which are curve-shaped text. Most of samples
in CUTE are curved. The test set has 288 images in all.

4.2 Settings

All the LR images are resized to 16 × 64 and HR images to 32 ×
128. The learning rate is set as 3 ×10-4 and batch size as 128.
We use the Adam optimizer with 𝛽1 = 0.9 and 𝛽2 = 0.99. In
the testing phase, we use a scene text recognizer ASTER [39] to

TABLE 1 Results of TLWSR on TextZoom.

Recognition accuracy (%)

Type

HR

ratio Loss function Easy Medium Hard Average

BICUBIC - - 64.7 42.4 31.2 47.2

Weakly
supervised

0(%) Lctc 23.5 30.7 45.4 32.5

10(%) L2(10%) + Lctc 72.0 54.6 37.0 55.6

25(%) L2(25%) + Lctc 73.3 56.2 38.5 57.1

50(%) L2(50%) + Lctc 74.7 58.7 41.4 59.3

Fully
supervised

100(%) L2 74.8 55.7 39.6 57.8

evaluate the SR models. All of our models are trained on a single
Nvidia RTX Titan GPU for 500 epochs.

4.3 Experiments on TextZoom

4.3.1 Results on TextZoom

As shown in Table 1, the training process does not converge
without HR ground-truths, and the SR results lag far behind
bicubic upsampled images. The main reason is that the predic-
tion of the text recognition network only contains high-level
semantic information, while the key to a generative task such
as super-resolution is to reconstruct low-level pixel informa-
tion. Therefore, it is not sufficient to only use coarse-grained
text labels for supervision. For the proposed weak supervi-
sion framework TLWSR, HR labels are partially available and
three HR label ratios (10%, 25%, 50%) are selected. The best
results are highlighted in bold. For fair comparison, TSRN [14]
is adopted as the SR model and we reproduce TSRN as the fully
supervised baseline. As shown in Table 1, our method achieves
comparable performance to the fully supervised baseline with
25% HR labels available on TextZoom. Furthermore, 50% of
HR labels lead to a significant gain of 1.5% average recognition
accuracy on ASTER [39].

In addition, we retrain different super-resolution backbones
under our proposed weak supervision framework with 10%,
25% and 50% of HR labels used and compare with their
reported results in [14]. From Table 2, we observe that our
framework can achieve reasonable performance when HR labels
account for 10% and 25%. Furthermore, our framework with
50% of HR labels can effectively enhance the performance of
each backbone. For example, EDSR [41] under the proposed
weak supervision framework boosts average accuracy by 5.9%
on CRNN [12].

4.3.2 Loss balance

We explore the choice of 𝜆 from {0, 0.01, 0.1, 1} with 50% HR
labels available and Table 3 shows the results. The recognition
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2786 SHI ET AL.

TABLE 2 Comparisons of different backbone networks retrained on the proposed weak supervision framework.

ASTER[39](%) MORAN[40](%) CRNN[12](%)

Backbone HR ratio Loss fuction Easy Medium Hard Average Easy Medium Hard Average Easy Medium Hard Average

VDSR[45] 100% L2 71.7 43.5 34.0 51.0 62.3 42.5 30.5 46.1 41.2 25.6 23.3 30.7

10% L2(10%) + Lctc 69.4 47.3 34.6 51.6 61.2 41.8 30.9 45.6 41.0 25.2 23.0 30.4

25% L2(25%) + Lctc 70.1 48.4 34.7 52.2 62.1 42.2 31.2 46.2 41.5 26.2 23.5 31.0

50% L2(50%) + Lctc 69.8 48.6 35.0 52.3 63.1 42.5 31.4 46.7 43.0 26.4 23.8 31.7

SRResNet[46] 100% L2 69.6 47.6 34.3 51.3 60.7 42.9 32.6 46.3 39.7 27.6 22.7 30.6

10% L2(10%) + Lctc 69.7 49.6 34.3 52.3 62.3 43.4 30.7 46.5 45.3 27.7 22.6 32.6

25% L2(25%) + Lctc 69.9 50.0 35.2 52.8 63.9 43.5 31.6 47.4 46.2 31.2 25.5 35.0

50% L2(50%) + Lctc 70.1 51.0 35.5 53.3 65.4 43.9 32.8 48.5 46.5 31.6 26.2 35.5

EDSR[41] 100% L1 70.4 49.1 34.2 52.4 64.2 44.9 31.3 47.9 42.5 29.1 23.2 32.2

10% L2(10%) + Lctc 70.8 50.6 35.4 53.4 67.5 45.1 33.2 49.7 48.7 31.8 25.6 36.2

25% L2(25%) + Lctc 69.8 48.6 35.0 52.3 63.1 42.5 31.4 46.7 43.0 26.4 23.8 31.7

50% L1(50%) + Lctc 72.1 49.9 36.0 53.9 68.5 45.2 33.4 50.2 52.3 33.3 27.5 38.6

RDN[42] 100% L1 70.0 47.0 34.0 51.5 61.7 42.0 31.6 46.1 41.6 24.4 23.5 30.5

10% L2(10%) + Lctc 68.8 47.0 32.4 50.6 60.9 41.9 30.7 45.5 40.2 24.2 23.2 29.8

25% L2(25%) + Lctc 69.3 47.5 34.3 51.6 63.2 41.8 31.2 46.5 42.2 25.0 24.1 31.1

50% L1(50%) + Lctc 70.4 49.3 35.0 52.7 64.7 42.2 31.3 47.2 45.9 29.1 24.6 33.9

TSRN[14] 100% L2 75.1 56.3 40.1 58.3 70.1 55.3 37.9 55.4 52.5 38.2 31.4 41.4

10% L2(10%) + Lctc 72.0 54.6 37.0 55.6 68.1 49.8 36.7 52.3 49.9 38.6 30.7 40.4

25% L2(25%) + Lctc 73.3 56.2 38.5 57.1 69.2 51.9 37.9 54.0 51.7 39.8 32.8 42.1

50% L2(50%) + Lctc 74.7 58.7 41.4 59.3 71.5 53.9 39.4 56.0 52.8 40.4 33.2 42.8

TABLE 3 Ablation study on the choices of 𝜆.

Accuracy (%) of ASTER[39]

𝝀 Easy Medium Hard Average

0 69.2 52.0 36.5 53.6

0.01 72.0 52.9 37.5 55.2

0.1 74.7 58.7 41.4 59.3

1 68.3 50.1 35.7 52.4

accuracy reaches best when 𝜆 is set to 0.1. Therefore, 𝜆 is set to
0.1 in 4.3.

4.3.3 Visualization on TextZoom

Figure 5 compares the visual super-resolution results of TLWSR
(50% HR labels available) with the fully supervised baseline
TSRN on the test dataset. It shows that our method can
effectively improve the visual quality of SR images with more
readable characters. The above part of Figure 5 indicates that
more details in text region are recovered by TLWSR (e.g. e,
b). More visual comparisons are shown in the below part of
Figure 5, which can verify the ability of TLWSR. (e.g. a, n in

the first column, second column of the below part are better
recovered using our method).

4.3.4 Generalization to scene text recognition
datasets

We evaluate the robustness of TLWSR using 50% HR labels as
a preprocessor on low visual quality scene text images, which
are chosen from IC13, IC15,SVTP and CUTE. We only pick
546 low-resolution images with resolution lower than 16 × 64
from these datasets. Furthermore, some manual degradation
is added to these picked images to increase the difficulty of
super-resolution. First, we blur the original images. Specifically,
a 5 × 5 sized Gaussian kernel is used to convolve these images
with 𝜎 = 1. Then, Gaussian noise with 𝜎 = 50 is added to the
blurred images. Examples of the original images and corre-
sponding degraded images are shown in Figure 6. Table 4 shows
the experimental results. Compared with preprocessing the orig-
inal images using fully supervised baseline TSRN [14], our
weakly supervised framework boosts the recognition accuracy
of ASTER [39] by 3.3%, MORAN [40] by 2.1%, CRNN [12]
by 1.7%. After blurring the images and adding Gaussian noise,
our method improves the performances of all three recognizers
as well. It demonstrates that the proposed method can be well
generalized to recover low-quality text images in other datasets.
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FIGURE 5 Comparisons of super-resolution visualization. Characters in red are missing or wrong. HR, high resolution; LR, low resolution; TSRN, text
super-resolution network.

FIGURE 6 Examples of images after degradation on scene text recognition datasets.

TABLE 4 Results on scene text recognition benchmarks.

Method HR ratio Loss function

ASTER [39]

(%)

MORAN [40]

(%)

CRNN [12]

(%)

Original Bicubic - - 69.4 65.4 53.3

TSRN 100% L2 70.7 69.6 57.8

TSRN 50% L2(50%) + Lctc 74.0 71.7 59.5

Blur Bicubic - - 43.4 43.5 31.5

TSRN 100% L2 51.3 47.9 37.9

TSRN 50% L2(50%) + Lctc 55.0 49.6 41.1

Blur+Noise Bicubic - - 37.9 35.2 24.2

TSRN 100% L2 48.7 42.1 32.7

TSRN 50% L2(50%) + Lctc 50.9 44.3 34.1

4.3.5 Visualization on scene text recognition
benchmarks

The super-resolution results after blurring and adding Gaussian
noise are shown in Figures 7 and 8, respectively. After blurring
the images, some characters are mixed together (e.g. i and l in
the second sample “textiles”). Noise further degrades the visual
quality of blurry images, making recognition more challenging.
After processing by our proposed weak supervision framework,

these blurry and noisy images can achieve better visual quality
compared with the fully supervised baseline (e.g. f and i in the
first sample “office”).

4.3.6 Failure Cases

Several failure cases are visualized in Figure 9. Long and oblique
texts bring difficulties to our method. We can observe that
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FIGURE 7 Super-resolution results of blurred images on scene text recognition datasets. Characters in red are missing or wrong.TSRN, text super-resolution
network.

FIGURE 8 Super-resolution results of blurred and noisy images on scene text recognition datasets. Characters in red are missing or wrong. TSRN, text
super-resolution network.

the super-resolved images suffer from blurry characters leading
to wrong text recognition. We look forward to addressing the
problem in the future work.

5 CONCLUSION

This paper explores weakly supervised super-resolution of
real-world text images and designs a novel framework called
TLWSR, aiming to reduce the dependency on HR labels which

are hard and costly to collect. Particularly, the super-resolution
network is combined with a text recognition network. CTC
loss is utilized to facilitate the process of super-resolution,
and thus concentrate more on the text regions. Extensive
experiments show that TLWSR reconstructs the blurry pix-
els better and outperforms fully supervised baseline method
in boosting recognition performance of LR images. Moreover,
TLWSR can be well generalized to low-quality images in mul-
tiple public text recognition datasets, which further verifies
the effectiveness and generalization of the proposed frame-
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SHI ET AL. 2789

FIGURE 9 Visualization of several failure cases. HR, high resolution; LR, low resolution.

work. Compared with previous STISR methods, TLWSR is
more practical and potential in realistic scenarios. This paper
conducts initial research on weak supervision framework in
STISR. As a new problem to be explored, weakly supervised
scene text image super-resolution deserves more attention in the
future.
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