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Abstract

Objective. Computed tomography (CT) is widely used in medical research and clinical diagnosis.
However, acquiring CT data requires patients to be exposed to considerable ionizing radiance, leading
to physical harm. Recent studies have considered using neural radiance field (NERF) techniques to
infer the full-view CT projections from single-view x-ray projection, thus aiding physician judgment
and reducing Radiance hazards. This paper enhances this technique in two directions: (1) accurate
generalization capabilities for control models. (2) Consider different ranges of viewpoints. Approach.
Building upon generative radiance fields (GRAF), we propose a method called ACnerf to enhance the
generalization of the NERF through alignment and pose correction. ACnerf aligns with a reference
single x-ray by utilizing a combination of positional encoding with Gaussian random noise (latent
code) obtained from GRAF training. This approach avoids compromising the 3D structure caused by
altering the generator. During inference, a pose judgment network is employed to correct the pose and
optimize the rendered viewpoint. Additionally, when generating a narrow range of views, ACnerf
employs frequency-domain regularization to fine-tune the generator and achieve precise projections.
Main results. The proposed ACnerf method surpasses the state-of-the-art NERF technique in terms of
rendering quality for knee and chest data with varying contrasts. It achieved an average improvement
0f2.496 dB in PSNR and 41% in LPIPS for 0°-360° projections. Additionally, for —15° to 15°
projections, ACnerf achieved an average improvement of 0.691 dB in PSNR and 25.8% in LPIPS.
Significance. With adjustments in alignment, inference, and rendering range, our experiments and
evaluations on knee and chest data of different contrasts show that ACnerf effectively reduces artifacts
and aberrations in the new view. ACnerf’s ability to recover more accurate 3D structures from single
x-rays has excellent potential for reducing damage from ionising radiation in clinical diagnostics.

1. Introduction

The 3D medical data generated by technologies such as computed tomography (CT) and magnetic resonance
imaging (MRI) often provide adequate visual information to assist physicians in diagnosis (Suetens 2009).
However, this is often accompanied by high costs. In the case of CT data, for example, the basic principle is to
scan a certain thickness of layers of the body’s examination area with an x-ray beam to produce multiple slices
and overlap the slice information to obtain 3D data, but this requires prolonged exposure of the patient to a
higher level of Radiance compared to a single x-ray image (Lo et al 2012). Physicians usually choose to judge 3D
information from a few x-ray images for cost-effectiveness, but this relies heavily on human a priori knowledge.
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A practical challenge is reconstructing projections of 3D CT data from a small number of 2D x-rays using
computer techniques (Kasten et al 2020).

In the context of a given imaging system, early approaches involved establishing mathematically compatible
models that iteratively and analytically reconstructed the 3D information of medical images (Huynh et al 2015,
Xie etal 2020). However, its application is greatly restricted when the imaging system is unknown or
incompatible with the mathematical model. With the development of deep learning, much research has been
focused on utilizing sparse views to reconstruct three-dimensional CT data from a limited number of two-
dimensional medical images (Li et al 2019, Lindell et al 2021, Sun et al 2021, Shen et al 2022, Cheng et al 2023).
These methods overcome the unknowns in the imaging system and the mismatch of mathematical models, but
they require annotated data and supervised paired 3D data. Consequently, the expensive annotation and
training costs make it challenging to generalize these methods to niche medical fields.

Recently, neural radiance field (NERF) has received much attention in medicine, which can be used to
estimate an implicit representation of its 3D structure using 2D images by neural networks (Mildenhall et al
2021). The neural network can query the density and color information of the points on the novel view ray, and
then using Volume rendering, the new view can be drawn. This technique is proposed with stringent
requirements. Firstly, the training image scene must be stationary, or the images can be assumed to have been
taken simultaneously. Secondly, the number of training images largely determines the effectiveness of the novel
view synthesis (Martin-Brualla et al 2021, Yu et al 2021b). Also, capturing multiple patient images in a short time
is difficult and inconsistent with economic and health assumptions.

To overcome the shortcomings of the original NERF, some models adopt a sparse view and leverage prior
knowledge to generate feature maps (Wang et al 2021, Yu et al 2021b), geometric depth information (Chen et al
2021), and adversarial training to endow the radiance field with generalization capability (Schwarz et al 2020,
Trevithick and Yang 2021). Although these models have achieved competitive results on natural images, they
have not made targeted improvements for medical images, particularly in cases where the imaging scene and
initial angles are fixed. One of them, GRAF (Schwarz et al 2020), uses inputs from random views and an
adversarial supervised training scheme, which enables it to excel in generalization ability and image re-editing.
MEDnerf (Corona-Figueroa et al 2022) has improved GRAF by attempting to restore the complete CT
projection with single-view x-ray, which revealed the potential of the NERF technique in this direction. Fine-
tuning the GRAF model’s generator alone for creating complete CT projections of specific patients does not
meet the accuracy requirements of medical imaging due to limited generalization capabilities.

While investigating the ability of NERF models to generalize over medical images, we observed an intriguing
phenomenon. The process of fine-tuning the model generator using solely a single reference x-ray of a specific
patient resulted in artifacts, along with significant distortions, in the other generated 3D CT projections, as
shown in figure 1. MEDnerf. These issues stem from the destruction of the trained implied 3D structure. In this
paper, to mitigate this, we propose the ACnerf, which combines latent code with position encoding to propose a
linear form of coding that fully utilizes its editing potential during the fine-tuning phase. At the same time, we
design a pose judgment network to correct the error between the output image and its corresponding pose, as
shown in figure 2. Furthermore, inspired by FREEnerf (Yang et al 2023), we design a frequency-domain
regularization to fine-tune the generator to reconstruct small-range projections. In contrast to state-of-the-art
NERF methods, comprehensive experiments on full 360° and small-range predictions on keen (Ali et al 2016)
and chest (Clark et al 2013) datasets show that ACnerf offers significant advantages across a wide range of
challenges. The main contributions are summarized below:

(1) We propose a solution to enhance the quality of generated images through alignment. Our approach
utilizes latent encoding to linearly impact positional encoding, enabling the generator to accurately perform
alignment operations without disturbing the data manifold captured during the training phase.

(2) We designed a pose judgment network to perform pose correction operations. The network introduces
additional prior knowledge of medical images into the NERF, which effectively reduces the pose error.

(3) The proposed ACnerf achieves better results on the experimental datasets. Compared to the state-of-the-
art model, the Peak Signal-to-Noise Ratio (PSNR) is improved 2.452 dB, 2.54 dB and the Learned Perceptual
Image Patch Similarity (LPIPS) is improved by 44%, 38% on knee and chest for the 360° views, respectively.

(4) Frequency-domain regularization scheme is employed to optimize the generator, enhancing projection
accuracy for small-range reconstruction and rendering. In the —15° to 15° views, the PSNR is improved by
0.767 dB, 0.615 dB and the LPIPS is improved by 34% and 11%, respectively.

2. Related work

In recent years, NERF have achieved significant breakthroughs across various areas, garnering growing
attention. This chapter will review the NERF technology and discuss critical research on sparse viewpoint and
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Figure 1. The total process for reasoning about new projections from a single x-ray using NERF technology. The first halfis the
training phase of the model, where the generator infers the density and color of the particles based on their position in space and the
observation pose. The N particles in a ray are volume rendering to get a pixel value, and the pixel values obtained from the R rays form
apatch. Position information is conveyed using green arrows, pose information is in blue, and latent code introduced to control the
network is in yellow. The second halfis the inference phase, which involves aligning the network with the reference pose by fine-
tuning it, and then changing the input pose of the network to get a new projection.
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Figure 2. Flowchart of the pose judgment network. The blue solid and dashed parts are the inputs and outputs of the training and
inference phases, respectively, and the pose is unified with 3D Euler angles. When the error between the network’s predicted pose’ and
the generator’s input pose is less than e, the predicted projected image’ is accepted. Otherwise, the pose is updated to continue the
generator’s inference.

generalization capabilities. Finally, we will report on the application of NERF technology in medical image
reconstruction.

2.1.Neural radiance field

In the representation of 3D structure, implicit representations are more adept at handling topological structures
and describing relationships between points (Xie et al 2022). As powerful function approximators, neural
networks hold an advantage in implicit representation schemes for scenes. The idea behind NERF is to represent
the target reconstructed 3D structure as a continuous function parameterized by neural networks (Mildenhall
etal2021). The foundational research of NERF primarily focuses on enhancing the reconstruction quality
through rendering viewpoints (Barron et al 2021, Martin-Brualla er al 2021, Barron et al 2022, Roessle et al 2023),
accelerating training and inference (Liu et al 2020, Park et al 2021, Yu et al 202 1a, Miiller et al 2022, Chen et al
2023a), and addressing dynamic scene deformations (Park etal 2021, Xu and Harada 2022, Liu et al 2023D).
Currently, NERF has found wide applications in various domains, including 3D editing tasks (Jain et al 2022,
Poole et al 2022), segmentation tasks (Ranade et al 2022, Cen et al 2023, Siddiqui et al 2023), and facial
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reconstruction (Guo et al 2021, Isik et al 2023, Wang et al 2023), among others. One strict condition in these
tasks is the need for alarge number of images to be used as a reference to obtain a high-quality representation of
the scene, which significantly limits its use in real-life applications.

2.2.Few-shot and zero-shot NERF

Many studies attempt to introduce additional information to address the problem of few-shot volume
rendering. Leveraging pre-trained networks’ prior knowledge to generate feature maps (Wang et al 2021, Yu et al
2021b), incorporating depth information (Chen et al 2021), or incorporating specific scene geometrical priors
(Kulhdnek et al 2022, Niemeyer et al 2022, Yang et al 2023) can all alleviate the issue to some extent. With the
improvement of computational power, some studies have incorporated diffusion models from image
generation tasks into the training of NERF, showing excellent performance in completely unknown single-view
reconstruction tasks (Liu et al 2023a, Wynn and Turmukhambetov 2023). Although pre-trained diffusion
models can generate various images, precise control over the viewing pose becomes challenging, while expensive
inference and training costs are also required. In constrained categories, NERF with generalization capability has
an advantage. The network can capture the manifold of specific types rather than a single scene by employing
adversarial training (Schwarz et al 2020, Trevithick and Yang 2021), random input position encoding, and pose.
However, these methods often struggle with registration in medical scenarios that demand high precision and
accuracy regarding angles.

2.3.NERF in medicine

Currently, the medical field is primarily focused on exploring the potential of NERF technology in 3D
reconstruction and has achieved some initial progress. When multiple reference projections (more than 50) are
available, NAF (Zha et al 2022) restores 3D CT data by modifying the rendering technique of radiation fields.
SNAF (Fang et al 2022) further enhances data quality and reduces the input of projections (requiring over 30) by
utilizing a pre-trained denoising module. DIF-net (Lin et al 2023) adopts U-net as the feature extraction network
and uses the feature information from the reference projections as input for the radiation field. It utilizes 3D data
for supervised training, but still necessitates the reconstruction of five or more projections. When 3D data is
available, Cunerf (Chen et al 2023b) utilizes a voxel-based sampling and rendering method to achieve zero-shot
super-resolution reconstruction. Ultra-nerf (Wysocki et al 2023) applies radiation field techniques to medical
scenarios with continuous multi-view references, enabling new view reconstruction of ultrasound videos.
MEDnerf (Corona-Figueroa et al 2022) considers a more realistic scenario where a single x-ray image is obtained
as areference and uses a radiation field model with generalization capability to reconstruct CT projections from
new views. Still, MEDnerf can be difficult to align and produce distortions when generating continuous CT
projections of the patient, which remains a challenging problem.

3. Method

In this section, we first present the overall flow of inferring new views from a single x-ray image, as shown in
figure 1. In the overall flow, we describe the training process using different views of x-ray images with GRAF
(Schwarz et al 2020) as the backbone, and briefly describe how the inference process can be optimized by two
optimization schemes, alignment and pose correction. Subsequently, we describe in detail the workflow and
application scope of these two schemes. Finally, we propose a fine-tuning scheme to accurately generate
projections on a small range. The specific implementation details of these contents are as follows:

3.1. Network overview

Asshown in figure 1 (Training), The NERF establishes a continuous mapping from the position of points x = (x,
¥, z) and the viewing pose d to the color content c and volume density o of the points, thus representing the
implicit 3D structure. Specifically, when the color content c and volume density o of the particles traversed by
the ray r(f) = o0 + td emitted along the direction d from the center of projection o in space are known, the pixel
color C(r) can be computed using volume rendering:

Cir) = j;tf- o(r(®)c(r (), d)dt "

e[ o(r(snds)

where ¢(*) and o(*) represent the computation functions for color and volume density, given the sampled results
of Npoints (from ¢, to ), an approximate volume rendering integral C(r) can be computed as follows
(Max 1995):
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In practical applications, MLP networks are commonly used to approximate c(*) and o(*) :
(¢ci» 07) = Fyp (7(x0), v(d)), 3)

where 7(x;) and y(d) represent the high-frequency encodings of point positions and observation directions,
the process of high-frequency encoding can be described as follows:

L-1
Y(p)=p U in@p), cos(2’p)), L € N. 4

i=0

Using patches of K x Krays selected with random poses as inputs for the discriminator D, It adopts the
unsaturated GAN loss (Mescheder et al 2018) to bring the distribution of generated images closer to ground
truth:

L0, ¢) = E, ,~~n@,plf Ds(Go(Zs, Zs, &, )]
+E(f(=Dg(D) + X |VDs(D|*), f (t) = —log(1 + exp(—1)), (%)

Where € and v are sets of points and poses that render the patch, respectively. Z, and Z; are 128-dimensional
latent codes randomly sampled from a Gaussian distribution during training, used to fine-tune the appearance
and shape of specific images. After training, a new projection is obtained by changing the inputs after aligning the
model with the reference image as shown in figure 1 (Inference). The adversarial training approach allows GRAF
to be unfamiliar with the ground truth pose, leading to errors in the new projections (figure 1 GRAF). To
alleviate this problem, MEDnerf employs a relaxed reconstruction formulation (Pan et al 2021) to align the
reference projection:

0*, Z¥, ZF = argmin L(I, G(Z; 0)), I* = G(Z*; 0%), (6)
0,207,

where L denotes the mean square error, and the optimal 6" and Z* are sought by fine-tuning § and Z so that the
projection I" rendered by the generator is close to the reference projection I at the same pose. In single-view
reconstruction, the generator G is highly susceptible to overfitting, resulting in only high-quality images of the
reference angle and distortions at unknown angles (as shown in figure 1 MEDnerf), which we do not expect.
Therefore, during the inference stage (as shown in figure 1 Inference), we devised an approach to integrate the
latent encoding Z with positional encoding. This approach involves adjusting Z to influence the sampling
positions, thereby aligning the network with the reference x-ray while avoid modifying the generator’s
parameters Gy. Following the alignment, to mitigate errors in new views caused by pose inaccuracies, we
designed the pose judgment network. It evaluates the pose of the rendered new view and accepts it when the pose
meets the predefined criteria (as shown in figure 1 (Ours)). Otherwise, the input to the generator is modified. We
provide detailed explanations of the aforementioned reference alignment and pose correction methods in
sections 3.2 and 3.3, respectively.

3.2. Aligning reference projection using latent encoding

In GRAF, the observation angle, particle position, appearance, and shape of the object are disentangled, with Z;
and Z, separately controlling shape and appearance. The capability is limited when aligning the network to a
specific space solely by adjusting Z; and Z,,. In scenarios where image editing is not required, a certain level of
coupling in the system is permissible. With this consideration, we design latent encoding to linearly influence
position encoding, following the process outlined below:

Y@ =Z © y(x) + Z,, (7)

where y(x)" represents the adjusted position encoding, ® signifies the Hadamard product operation, and +
denotes the concat operation. By employing this method to extend the influence range of v(x), the
reconstruction formula transforms into:

Z¥, ZF = argminL(l, G(Z; v(x))), I* = G(Z* v(x)*). (®)
Z5’ Zﬂ

Throughout this process, the generator’s parameters have not been altered, thereby avoiding the image
distortions caused by equation (6). In the experimental section 4.3.1, we demonstrate that the convergence
direction of equation (8) aligns with the enhancement direction of projection quality for unknown poses.
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3.3. Pose judgment network

In order to achieve generalization across different image spaces, the GRAF does not include rigorous training for
the pose. Consequently, precise correction is required, despite the model’s continuous understanding of the
pose, particularly when generating images specific to individual patients. Building upon aligning the input poses
to the reference image in section 3.2, we design a pose judgment network to correct errors in the projections
generated under unknown poses, as shown in figure 2. The backbone of the network employed in the study
utilizes VGG16. The inputs consist of two CT projections acquired from the same patient but with different
poses, along with the pose information corresponding to one of the projections. The primary objective of the
network is to predict the pose of the other projection. In the inference stage, the reference image, the generating
image, and the reference pose are used as inputs to get the pose judged by the network, and the specific process
can be expressed as follows:

aj/a /Bj/) 90]‘/ = vggl()(Ib I]) Qi /Bi) SD,'): (9)

where «, 3,  represents the three-dimensional pose of the projection. When the predicted pose is close to the
input of the generator, the output of the generator is accepted. Otherwise, the input to the generator is adjusted,
following the strategy outlined below:

v — (Bgae(lp, I6)) < e
IG = Ge(Zsa Za) 5’ 2v — E/ggIG(IR) IG))) (10)

Where I and I represent the reference projection and generated projection, respectively. When the
difference between the predicted view angle and the input view angle is less than e, the generated image is
accepted. Otherwise, the network input view pose is corrected. During inference, the reference projection’s pose
is chosen as the initial, and a 360° projection is generated with it as the center.

3.4. Network fine-tuning based on frequency-domain regularization

During the fine-tuning process, altering the generator’s parameters carries a significant risk of inducing
distortion in the projections, particularly when dealing with large angles. When relying solely on a reference
single x-ray, a more practical application is to obtain accurate images for a small-range. In FREEnerf (Yang et al
2023), a frequency-domain regularization approach is employed to train under sparse views, aiming to prevent
network overfitting caused by high-frequency position encoding. Taking inspiration from this approach, we
build upon section 3.2 and apply a frequency-domain regularization to the position encoding in the network’s
input. We fine-tune the generator’s parameters, gradually reducing the high-frequency mask as the training
epochs progress. This process can be described as follows:

Yx) =) © at),

1, ifi<%+39

with «o;(t, T, L) = { (11)

0, otherwise

where a(f) represents the position of the mask, T'is the total number of training epochs, and as the epochs ¢
increase, the mask is gradually released following the amplitude L. The generator’s parameters are fine-tuned
through mean squared error between the generated and reference images. When the network focuses more on
the low-frequency region, inputs with small angles tend to align, thereby alleviating mode collapse. During
inference, we generate projections ranging from —15° to 15°around the pose of the reference to validate their

quality.

4. Experiment

4.1. Dataset and metrics

Collecting paired x-ray images and CT data can lead to errors due to patient movement and equipment
variations, and it can also subject patients to higher Radiance exposure. Therefore, following the approach of
MEDnerf, we employ digital radiographic radiography (DRR) techniques to obtain simulated projections from 5
knee joint CT datasets (Ali etal 2016) and 20 chest CT datasets (Clark et al 2013). These datasets encompass
patients with varying contrasts. During the simulation of projections, we assume that the x-ray source and the
projection panel are parallel. Projections are generated at 5-degree intervals around the Z-axis, resulting in 72
angles for each CT dataset. The resolution is set to 128 x 128. During training, we randomly sample 80% of the
complete patient data, which includes chest data from 16 patients and knee data from 4 patients. During testing,
we provide a random view from the remaining patients as a reference and generate projections for the remaining
71 views. This work does not involve experimental procedures with human subjects or animals.
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Table 1. Quantitative comparisons in 0° to 360° were evaluated using PSNR 7, SSIM 1, and LPIPS |. The best and second-best results are
marked in red and blue, respectively. Our direct baseline is GRAF.

knee dataset chest dataset
PSNR | SSIM | LPIPS | PSNR | SSIM | LPIPS
PIXELnerf | 17.059 | 0.529 0.469 16.874 | 0.335 0.432
GRAF 14.717 | 0.524 0.360 15.493 | 0.328 0.337
MEDnerf 15.356 | 0.538 0.311 15.524 | 0.339 0.326
FREEnerf 12.641 | 0.308 0.434 13.173 | 0.288 0.621
our w/o PJ | 17.194 | 0.563 0.206 17.728 | 0.350 0.215
ours 17.808 | 0.584 0.174 18.064 | 0.447 0.202

Method

We quantitatively evaluate the results based on three visual metrics: Peak Signal-to-Noise Ratio (PSNR),
Structural SimilarityS (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al2018). PSNR
and SSIM focus more on pixel-level differences, while LPIPS measures perceptual differences that are highly
correlated with human perception. The higher the similarity between images, the closer the PSNR value is to
infinity, the closer the SSIM value is to 1, and the closer the LPIPS value is to 0. In the experiments, all models are
built using the PyTorch framework and run on a single NVIDIA RTX A6000 GPU with 48GB of memory. For a
fair comparison, we maintain uniform hyperparameters across all models: position encoding y(x) = 63, pose
encoding y(d) = 27, utilizing the Adam optimizer with a learning rate annealing from 10~ *to 10~ ® through
cosine annealing, a batch size of 16, and a total of 100 000 iterations. When aligning the generalization models
(Ours, GRAF, MEDnerf) to the images, we uniformly employ PSNR as the output metric, considering the
alignment complete when the increase in PSNR is less than 0.5% in every 50 iterations. The pose error limits
e = 0.04. Due to the lack of generalization in FREEnerf (Yang et al 2023), it cannot utilize the training set. We
provide 18 views during testing to establish a comparable benchmark with other models.

4.1.1. Frequency-domain regularization
Table 5 presents the rendering results of different methods after fine-tuning the generator using approach 3.4, all
of which were already aligned before the fine-tuning process. It can be observed that within a small-range,

4.2. Comparison with state-of-the-art models

We compare the proposed ACnerf with four state-of-the-art methods, including two models with excellent
generalization capabilities and two models specifically designed for sparse view reconstruction. Among them,
GRAF (Schwarz et al 2020) enhances the generalization of the original radiance field by introducing random
noise and utilizing adversarial learning mechanisms during the training phase. In the inference phase, random
noise is treated as a code and modified to edit the projection. Building upon this, MEDnerf (Corona-Figueroa
etal 2022) further optimizes the training process by subjecting the patches generated by GRAF to three
enhancement schemes with a discriminator, resulting in visually improved images. PIXELnerf (Yu etal 2021b)
leverages a pre-trained classification network (Resnet34) to extract features from reference images and combines
them with the spatial coordinates of the radiance field as inputs to the network. This incorporation of additional
prior knowledge helps alleviate the information deficiency caused by sparse views. On the other hand, FREEnerf
(Yang et al 2023) considers reasonable constraints and employs frequency-domain regularization in the training
process to prevent overfitting caused by sparse views, but it lacks generalization capabilities. Based on different
practical needs, the experiments investigate the quality of 360° projections and small-range projection quality.

4.2.1. Quantitative comparison

Table 1 reports the performance of various models at 0° to 360°. For generating 360° projections, to prevent
distortion in distant projections caused by changes in generator parameters, two approaches proposed in
sections 3.2 (ours w/o PJ) and 3.3 (ours) are progressively adopted. We can observe that the projection quality of
both schemes of ACnerf outperforms all competitors, especially the LPIPS, which is highly correlated with image
perception. The PSNR performance of PIXELnerf (Yu et al 2021b) is closer to ours on the knee, but not on the
chest, which has a more complex organizational structure. Other schemes that focus on training patterns
without introducing a priori information during training all perform better on the chest. This confirms the
correctness of our motivational direction. Table 2 shows the performance of the different models at —15° to 15°.
In thelocalized projection (—15° to 15°), we employ the fine-tuning strategy from section 3.4 (ours+) based on
the foundation of section 3.2. In this aspect, we emphasize pixel-level accuracy more strongly, and ACnerf
continues to maintain the highest projection quality. Compared to PIXELnerf (Yu et al 2021b) and GRAF
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Table 2. Quantitative comparisons at —15° to 15° and —5° to 5° were evaluated using PSNR 1, SSIM 7, and LPIPS |. The best and second-
best results are marked in red and blue, respectively.

knee dataset

chest dataset

range | Method I —exm o T T LPIPS | PSNR | SSIM | LPIPS
o | PIXELnerf | 19.469 | 0.569 | 0.542 | 18.551 | 0.488 | 0.582
. GRAF 18341 | 0.625 | 0274 | 18.124 | 0.564 | 0.313
2 MEDnerf | 24.452 | 0.757 | 0.135 | 22.056 | 0.556 | 0.153
B FREEnerf | 24.942 | 0.775 | 0.163 | 21.969 | 0.537 | 0.251
! ours 25.219 | 0.787 | 0.080 | 22.671 | 0.571 | 0.135
- PIXELnerf | 21.094 | 0.621 | 0.456 | 20.963 | 0.492 | 0.595
o GRAF 18.863 | 0.662 | 0.28 | 18.709 | 0.547 | 0.254
8 MEDnerf | 28.429 | 0.821 | 0.075 | 23.940 | 0.644 | 0.092
i FREEnerf | 28.815 | 0.782 | 0.09 | 23.616 | 0.696 | 0.087
ours 29.018 | 0.826 | 0.037 | 23.911 | 0.631 | 0.073

(Schwarz et al 2020), methods that fine-tune network parameters based on reference views (MEDnerf (Corona-
Figueroa et al 2022) and FREEnerf (Yang et al 2023)) exhibit distinct advantages. MEDnerf (Corona-Figueroa

eral 2022) achieves the best PSNR results in the chest region at —5° to 5°, but struggles to maintain performance
away from the reference view.

4.2.2. Qualitative comparison
Figure 3 illustrates the visual results of ACnerf compared to other competitors in the 0 to 360° view. We also
provide depth maps for each viewpoint. It can be observed that ACnerf maintains consistent stability across
different viewpoints, and the utilization of the pose judgment network (ours) significantly enhances pose
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Figure 4. Visualization results of the —15° to 15° knee projection. The fifth column is the bone image extracted from the —15°
projection using the contrast transform.

optimization. Although PIXELnerfs (Yu e al 2021b) PSNR is similar to ours, it notably falls behind in terms of
LPIPS. This discrepancy stems from its projections having correct poses but lacking a substantial amount of
high-frequency details, leading to a markedly inferior visual perception. From the depth maps, we can see its
particles scattered on the surface of space. This issue is even more severe in FREEnerf (Yang et al 2023), where
particles almost adhere to the outermost layer of space. GRAF (Schwarz et al 2020) generates the most visually
appealing projections, but its pose does n0t match the ground truth, as analyzed in section 3.1. MEDnerf
(Corona-Figueroa et al 2022) generates artifacts, and its pose still exhibits significant differences from the ground
truth. The depth map shows that its spatial particles distort to positions without color in the ground truth.

In figure 4, we present the results of different methods rendered from —15° to 15°, with the 5th column
showcasing the skeletal images extracted using contrast transform. In the context of localized projections, pose
differences are almost indiscernible. However, through contrast enhancement, it can be observed that only
ACnerfaccurately restored the position and shape of the skeleton.

4.3. Ablation study

In this section, a detailed experimental justification is carried out for the three processes of ACnerf: (1) latent
coded alignment projection; (2) pose judgment network; (3) fine-tuning of the generator parameters when
masking in the frequency-domain. The baseline model used is GRAF (Schwarz et al 2020), performed on the
knee dataset (Alietal 2016).
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Figure 5. Comparison between the alignment of MEDnerf in section 3.1 (Z and G) and the alignment proposed in section 3.2 (Ours
W/O PJ). The horizontal axes of both (a) and (b) denote the alignment values of the network with the reference projection. The
vertical axes represent the average PSNR and LPIPS rendered by the network at the remaining poses, respectively.

Table 3. Comparison of different alignment methods. We compare the performance of the two alignment approaches reported in section 3.1
with the performance of our designed scheme in section 3.2 in terms of alignment peaks and alignment times as well as rendering results. The
alignment peak is evaluated using PSNR, the alignment time in seconds, and the rendering results are evaluated using PSNR T, SSIM T, and
LPIPS |. Optimal and suboptimal results are marked in red and blue, respectively.

Only Z(GRAF)

7 and G(MEDnerf)

ours

Alignment peak values

24.114

32.547

27.085

Alignment times

577"

1'39”

18"

Rendered results

14.658/0.527/0.381

15.513/0.522/0.326

17.128/0.545/0.268

Table 4. The gain on the rendering results after correcting the pose. The second row (Original) is not aligned with the scheme presented in
section 3.1, and the fifth row is the result obtained by correcting the pose after alignment. The rendering results are evaluated using PSNR T,
SSIM T, and LPIPS |. The results in red in parentheses are the gains.

GRAF MEDnerf
Method
PSNR SSIM LPIPS PSNR SSIM LPIPS
Original 12.036 0.363 0.781 12.422 0.394 0.759
Pose Correction 14.007(1.971) | 0.462(0.099) | 0.416(-0.365) | 14.885(2.463) | 0.507(0.113) | 0.414(-0.345)
Alignment 14.569 0.522 0.358 15.351 0.535 0.316
Pose Correction(aligned) | 15.424(0.855) | 0.538(0.016) | 0.327(-0.031) | 15.402(0.051) | 0.541(0.006) | 0.31(-0.006)

4.3.1. Use of latent codes
When aligning the pre-trained model with the reference projection, PSNR was employed as the assessment
metric. Table 3 compares alignment peak values, alignment times, and rendered results among three approaches
under a 360° projection: updating only latent codes, updating both the generator and latent codes, and utilizing
latent codes to influence positional encoding. While updating the generator might lead to a higher alignment
peak, our objective does not solely revolve around attaining alignment. Instead, our focus is on obtaining new
viewpoint projections. Method 3.2 holds advantages regarding alignment time and rendering results.

We plotted box plots (figure 5) of the rendering results as the alignment outcomes grew. As the alignment
results peak, updating the generator leads to divergence due to sacrificing the structure of unknown angles. In
contrast, the alignment outcomes of method section 3.2 converge in the same direction as the rendering quality.

4.3.2. Pose correction

We have applied corrective measures using approach 3.3 to the adversarial loss-trained methods GRAF (Schwarz
et al 2020) and MEDnerf (Corona-Figueroa ef al 2022). Table 4 presents the rendering results for a 360° view. To
enable the model to output results, we relaxed e to 0.08. Without aligning the model to the reference projection,
the correction of pose improved both rendering results. However, upon aligning the model, only the method of
keeping the generator parameters unchanged demonstrated a noticeable effect, as the inherent distortion in the
projections caused by the network is irregular and uncontrollablewhich is also the motivation behind the design
in section 3.2. the fine-tuning approach of section 3.4 is effective for generators aligned using all registration
methods. In contrast to the levels reported in table 1, all methods exhibit varying degrees of decrease in the 360°
projections.
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Table 5. Rendering results after employing the frequency-domain regularization fine-tuned generator. PSNR 1, SSIM 1, and LPIPS | were
used for evaluation. Data in parentheses report differences from table 1 and table 2. Results labeled red in parentheses are their gains, and
those marked blue are declines.

0° to 360° -15° to 15°
Method
PSNR SSIM LPIPS PSNR SSIM LPIPS
GRAF 14.126(-0.591) | 0.490(-0.034) | 0.397(0.037) | 21.161(2.82) | 0.686(0.061) | 0.158(-0.116)
MEDnerf | 14.475(-0.881) | 0.535(-0.003) | 0.356(0.045) | 24.892(0.44) | 0.773(0.016) | 0.115(-0.020)
Ours 16.57(-1.238) 0.562(-0.022) | 0.296(0.122) 25.219 0.787 0.089

5. Conclusion

With the advancement of NERF technology, many studies utilize it to recover medical data from a few images.
Among them, inferring new views using only a single image poses is a significant challenges. We reveal that there
is potential in two directions: (1) matching NERF models to medical images by more fully exploiting their
generalization capability. (2) Refinement of the reasoning process to accommodate different rendering ranges.
In this paper, we propose ACnerf, which reconstructs the projections of other pose from the projections of a
single pose, with GRAF as the backbone. ACnerf utilizes latent codes to linearly influence positional encoding for
image alignment, preventing changes in the generator’s parameters from causing disruption to the 3D structure.
During inference, a pose judgment network is employed to correct pose, optimizing the model’s rendering
views. For narrow-range projection rendering, we introduce a refinement technique involving the utilization of
frequency-domain masks to fine-tune the generator. By adjusting alignment, inference, and rendering scopes,
experimental results on knee and chest data with varying contrasts demonstrate that ACnerf outperforms the
current state-of-the-art Radiance field approaches, effectively reducing artifacts and distortions.
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