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Abstract
Objective.Computed tomography (CT) is widely used inmedical research and clinical diagnosis.
However, acquiringCTdata requires patients to be exposed to considerable ionizing radiance, leading
to physical harm. Recent studies have considered using neural radiancefield (NERF) techniques to
infer the full-viewCTprojections from single-view x-ray projection, thus aiding physician judgment
and reducing Radiance hazards. This paper enhances this technique in two directions: (1) accurate
generalization capabilities for controlmodels. (2)Consider different ranges of viewpoints.Approach.
Building upon generative radiancefields (GRAF), we propose amethod called ACnerf to enhance the
generalization of theNERF through alignment and pose correction. ACnerf aligns with a reference
single x-ray by utilizing a combination of positional encodingwithGaussian randomnoise (latent
code) obtained fromGRAF training. This approach avoids compromising the 3D structure caused by
altering the generator. During inference, a pose judgment network is employed to correct the pose and
optimize the rendered viewpoint. Additionally, when generating a narrow range of views, ACnerf
employs frequency-domain regularization tofine-tune the generator and achieve precise projections.
Main results.The proposedACnerfmethod surpasses the state-of-the-artNERF technique in terms of
rendering quality for knee and chest data with varying contrasts. It achieved an average improvement
of 2.496 dB in PSNR and 41% in LPIPS for 0°–360° projections. Additionally, for−15° to 15°
projections, ACnerf achieved an average improvement of 0.691 dB in PSNR and 25.8% in LPIPS.
Significance.With adjustments in alignment, inference, and rendering range, our experiments and
evaluations on knee and chest data of different contrasts show that ACnerf effectively reduces artifacts
and aberrations in the new view. ACnerf’s ability to recovermore accurate 3D structures from single
x-rays has excellent potential for reducing damage from ionising radiation in clinical diagnostics.

1. Introduction

The 3Dmedical data generated by technologies such as computed tomography (CT) andmagnetic resonance
imaging (MRI) often provide adequate visual information to assist physicians in diagnosis (Suetens 2009).
However, this is often accompanied by high costs. In the case of CT data, for example, the basic principle is to
scan a certain thickness of layers of the body’s examination areawith an x-ray beam to producemultiple slices
and overlap the slice information to obtain 3Ddata, but this requires prolonged exposure of the patient to a
higher level of Radiance compared to a single x-ray image (Lo et al 2012). Physicians usually choose to judge 3D
information from a few x-ray images for cost-effectiveness, but this relies heavily on human a priori knowledge.
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Apractical challenge is reconstructing projections of 3DCTdata from a small number of 2D x-rays using
computer techniques (Kasten et al 2020).

In the context of a given imaging system, early approaches involved establishingmathematically compatible
models that iteratively and analytically reconstructed the 3D information ofmedical images (Huynh et al 2015,
Xie et al 2020). However, its application is greatly restrictedwhen the imaging system is unknownor
incompatible with themathematicalmodel.With the development of deep learning,much research has been
focused on utilizing sparse views to reconstruct three-dimensional CTdata from a limited number of two-
dimensionalmedical images (Li et al 2019, Lindell et al 2021, Sun et al 2021, Shen et al 2022, Cheng et al 2023).
Thesemethods overcome the unknowns in the imaging system and themismatch ofmathematicalmodels, but
they require annotated data and supervised paired 3Ddata. Consequently, the expensive annotation and
training costsmake it challenging to generalize thesemethods to nichemedical fields.

Recently, neural radiance field (NERF) has receivedmuch attention inmedicine, which can be used to
estimate an implicit representation of its 3D structure using 2D images by neural networks (Mildenhall et al
2021). The neural network can query the density and color information of the points on the novel view ray, and
then usingVolume rendering, the new view can be drawn. This technique is proposedwith stringent
requirements. Firstly, the training image scenemust be stationary, or the images can be assumed to have been
taken simultaneously. Secondly, the number of training images largely determines the effectiveness of the novel
view synthesis (Martin-Brualla et al 2021, Yu et al 2021b). Also, capturingmultiple patient images in a short time
is difficult and inconsistent with economic and health assumptions.

To overcome the shortcomings of the original NERF, somemodels adopt a sparse view and leverage prior
knowledge to generate featuremaps (Wang et al 2021, Yu et al 2021b), geometric depth information (Chen et al
2021), and adversarial training to endow the radiance fieldwith generalization capability (Schwarz et al 2020,
Trevithick andYang 2021). Although thesemodels have achieved competitive results on natural images, they
have notmade targeted improvements formedical images, particularly in cases where the imaging scene and
initial angles arefixed. One of them,GRAF (Schwarz et al 2020), uses inputs from randomviews and an
adversarial supervised training scheme, which enables it to excel in generalization ability and image re-editing.
MEDnerf (Corona-Figueroa et al 2022) has improvedGRAF by attempting to restore the complete CT
projectionwith single-view x-ray, which revealed the potential of theNERF technique in this direction. Fine-
tuning theGRAFmodel’s generator alone for creating complete CT projections of specific patients does not
meet the accuracy requirements ofmedical imaging due to limited generalization capabilities.

While investigating the ability ofNERFmodels to generalize overmedical images, we observed an intriguing
phenomenon. The process offine-tuning themodel generator using solely a single reference x-ray of a specific
patient resulted in artifacts, alongwith significant distortions, in the other generated 3DCTprojections, as
shown infigure 1.MEDnerf. These issues stem from the destruction of the trained implied 3D structure. In this
paper, tomitigate this, we propose theACnerf, which combines latent codewith position encoding to propose a
linear formof coding that fully utilizes its editing potential during the fine-tuning phase. At the same time, we
design a pose judgment network to correct the error between the output image and its corresponding pose, as
shown infigure 2. Furthermore, inspired by FREEnerf (Yang et al 2023), we design a frequency-domain
regularization tofine-tune the generator to reconstruct small-range projections. In contrast to state-of-the-art
NERFmethods, comprehensive experiments on full 360° and small-range predictions on keen (Ali et al 2016)
and chest (Clark et al 2013) datasets show that ACnerf offers significant advantages across awide range of
challenges. Themain contributions are summarized below:

(1)Wepropose a solution to enhance the quality of generated images through alignment. Our approach
utilizes latent encoding to linearly impact positional encoding, enabling the generator to accurately perform
alignment operationswithout disturbing the datamanifold captured during the training phase.

(2)Wedesigned a pose judgment network to performpose correction operations. The network introduces
additional prior knowledge ofmedical images into theNERF, which effectively reduces the pose error.

(3)The proposed ACnerf achieves better results on the experimental datasets. Compared to the state-of-the-
artmodel, the Peak Signal-to-Noise Ratio (PSNR) is improved 2.452 dB, 2.54 dB and the Learned Perceptual
Image Patch Similarity (LPIPS) is improved by 44%, 38%on knee and chest for the 360° views, respectively.

(4) Frequency-domain regularization scheme is employed to optimize the generator, enhancing projection
accuracy for small-range reconstruction and rendering. In the−15° to 15° views, the PSNR is improved by
0.767 dB, 0.615 dB and the LPIPS is improved by 34%and 11%, respectively.

2. Relatedwork

In recent years, NERF have achieved significant breakthroughs across various areas, garnering growing
attention. This chapter will review theNERF technology and discuss critical research on sparse viewpoint and
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generalization capabilities. Finally, wewill report on the application ofNERF technology inmedical image
reconstruction.

2.1. Neural radiancefield
In the representation of 3D structure, implicit representations aremore adept at handling topological structures
and describing relationships between points (Xie et al 2022). As powerful function approximators, neural
networks hold an advantage in implicit representation schemes for scenes. The idea behindNERF is to represent
the target reconstructed 3D structure as a continuous function parameterized by neural networks (Mildenhall
et al 2021). The foundational research ofNERF primarily focuses on enhancing the reconstruction quality
through rendering viewpoints (Barron et al 2021,Martin-Brualla et al 2021, Barron et al 2022, Roessle et al 2023),
accelerating training and inference (Liu et al 2020, Park et al 2021, Yu et al 2021a,Müller et al 2022, Chen et al
2023a), and addressing dynamic scene deformations (Park et al 2021, Xu andHarada 2022, Liu et al 2023b).
Currently, NERF has foundwide applications in various domains, including 3D editing tasks (Jain et al 2022,
Poole et al 2022), segmentation tasks (Ranade et al 2022, Cen et al 2023, Siddiqui et al 2023), and facial

Figure 1.The total process for reasoning about new projections from a single x-ray usingNERF technology. The first half is the
training phase of themodel, where the generator infers the density and color of the particles based on their position in space and the
observation pose. TheN particles in a ray are volume rendering to get a pixel value, and the pixel values obtained from theR rays form
a patch. Position information is conveyed using green arrows, pose information is in blue, and latent code introduced to control the
network is in yellow. The second half is the inference phase, which involves aligning the networkwith the reference pose by fine-
tuning it, and then changing the input pose of the network to get a newprojection.

Figure 2. Flowchart of the pose judgment network. The blue solid and dashed parts are the inputs and outputs of the training and
inference phases, respectively, and the pose is unifiedwith 3DEuler angles.When the error between the network’s predicted ¢pose and
the generator’s input pose is less than e, the predicted projected ¢image is accepted. Otherwise, the pose is updated to continue the
generator’s inference.
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reconstruction (Guo et al 2021, Isık et al 2023,Wang et al 2023), among others. One strict condition in these
tasks is the need for a large number of images to be used as a reference to obtain a high-quality representation of
the scene, which significantly limits its use in real-life applications.

2.2. Few-shot and zero-shotNERF
Many studies attempt to introduce additional information to address the problemof few-shot volume
rendering. Leveraging pre-trained networks’ prior knowledge to generate featuremaps (Wang et al 2021, Yu et al
2021b), incorporating depth information (Chen et al 2021), or incorporating specific scene geometrical priors
(Kulhánek et al 2022,Niemeyer et al 2022, Yang et al 2023) can all alleviate the issue to some extent.With the
improvement of computational power, some studies have incorporated diffusionmodels from image
generation tasks into the training ofNERF, showing excellent performance in completely unknown single-view
reconstruction tasks (Liu et al 2023a,Wynn andTurmukhambetov 2023). Although pre-trained diffusion
models can generate various images, precise control over the viewing pose becomes challenging, while expensive
inference and training costs are also required. In constrained categories, NERFwith generalization capability has
an advantage. The network can capture themanifold of specific types rather than a single scene by employing
adversarial training (Schwarz et al 2020, Trevithick andYang 2021), random input position encoding, and pose.
However, thesemethods often struggle with registration inmedical scenarios that demand high precision and
accuracy regarding angles.

2.3. NERF inmedicine
Currently, themedicalfield is primarily focused on exploring the potential ofNERF technology in 3D
reconstruction and has achieved some initial progress.Whenmultiple reference projections (more than 50) are
available, NAF (Zha et al 2022) restores 3DCTdata bymodifying the rendering technique of radiation fields.
SNAF (Fang et al 2022) further enhances data quality and reduces the input of projections (requiring over 30) by
utilizing a pre-trained denoisingmodule. DIF-net (Lin et al 2023) adoptsU-net as the feature extraction network
and uses the feature information from the reference projections as input for the radiation field. It utilizes 3Ddata
for supervised training, but still necessitates the reconstruction offive ormore projections.When 3Ddata is
available, Cunerf (Chen et al 2023b) utilizes a voxel-based sampling and renderingmethod to achieve zero-shot
super-resolution reconstruction. Ultra-nerf (Wysocki et al 2023) applies radiationfield techniques tomedical
scenarios with continuousmulti-view references, enabling new view reconstruction of ultrasound videos.
MEDnerf (Corona-Figueroa et al 2022) considers amore realistic scenario where a single x-ray image is obtained
as a reference and uses a radiation fieldmodel with generalization capability to reconstruct CT projections from
new views. Still,MEDnerf can be difficult to align and produce distortionswhen generating continuous CT
projections of the patient, which remains a challenging problem.

3.Method

In this section, wefirst present the overall flowof inferring new views from a single x-ray image, as shown in
figure 1. In the overall flow,we describe the training process using different views of x-ray images withGRAF
(Schwarz et al 2020) as the backbone, and briefly describe how the inference process can be optimized by two
optimization schemes, alignment and pose correction. Subsequently, we describe in detail theworkflow and
application scope of these two schemes. Finally, we propose afine-tuning scheme to accurately generate
projections on a small range. The specific implementation details of these contents are as follows:

3.1. Network overview
As shown infigure 1 (Training), TheNERF establishes a continuousmapping from the position of points x= (x,
y, z) and the viewing pose d to the color content c and volume densityσ of the points, thus representing the
implicit 3D structure. Specifically, when the color content c and volume densityσ of the particles traversed by
the ray r(t)= o+ td emitted along the direction d from the center of projection o in space are known, the pixel
colorC(r) can be computed using volume rendering:
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where c(•) andσ(•) represent the computation functions for color and volume density, given the sampled results
ofN points (from tn to tf ), an approximate volume rendering integral ˆ ( )C r can be computed as follows
(Max 1995):
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In practical applications,MLP networks are commonly used to approximate c(•) andσ(•) :
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where γ(xi) and γ(d) represent the high-frequency encodings of point positions and observation directions,
the process of high-frequency encoding can be described as follows:
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Using patches ofK× K rays selectedwith randomposes as inputs for the discriminatorDf. It adopts the
unsaturatedGAN loss (Mescheder et al 2018) to bring the distribution of generated images closer to ground
truth:
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Where ξ and v are sets of points and poses that render the patch, respectively.Za andZs are 128-dimensional
latent codes randomly sampled fromaGaussian distribution during training, used tofine-tune the appearance
and shape of specific images. After training, a new projection is obtained by changing the inputs after aligning the
model with the reference image as shown infigure 1 (Inference). The adversarial training approach allowsGRAF
to be unfamiliar with the ground truth pose, leading to errors in the new projections (figure 1GRAF). To
alleviate this problem,MEDnerf employs a relaxed reconstruction formulation (Pan et al 2021) to align the
reference projection:

q q q= =
q

( ( )) ( ) ( )* * * * * *Z Z L I G Z I G Z, , argmin , ; , ; , 6s a
Z Z, ,a s

where L denotes themean square error, and the optimal θ* andZ* are sought by fine-tuning θ andZ so that the
projection I* rendered by the generator is close to the reference projection I at the same pose. In single-view
reconstruction, the generatorG is highly susceptible to overfitting, resulting in only high-quality images of the
reference angle and distortions at unknown angles (as shown infigure 1MEDnerf), whichwe do not expect.
Therefore, during the inference stage (as shown infigure 1 Inference), we devised an approach to integrate the
latent encodingZwith positional encoding. This approach involves adjustingZ to influence the sampling
positions, thereby aligning the networkwith the reference x-ray while avoidmodifying the generator’s
parametersGθ. Following the alignment, tomitigate errors in new views caused by pose inaccuracies, we
designed the pose judgment network. It evaluates the pose of the rendered new view and accepts it when the pose
meets the predefined criteria (as shown infigure 1 (Ours)). Otherwise, the input to the generator ismodified.We
provide detailed explanations of the aforementioned reference alignment and pose correctionmethods in
sections 3.2 and 3.3, respectively.

3.2. Aligning reference projection using latent encoding
InGRAF, the observation angle, particle position, appearance, and shape of the object are disentangled, withZs
andZa separately controlling shape and appearance. The capability is limitedwhen aligning the network to a
specific space solely by adjustingZs andZa. In scenarios where image editing is not required, a certain level of
coupling in the system is permissible.With this consideration, we design latent encoding to linearly influence
position encoding, following the process outlined below:

g g= +( ) ( ) ( )*x xZ Z , 7s a

where γ(x)* represents the adjusted position encoding,e signifies theHadamard product operation, and+
denotes the concat operation. By employing thismethod to extend the influence range of γ(x), the
reconstruction formula transforms into:

g g= =( ( ( ))) ( ( ) ) ( )* * * * *x xZ Z L I G Z I G Z, arg min , ; , ; . 8s a
Z Z,s a

Throughout this process, the generator’s parameters have not been altered, thereby avoiding the image
distortions caused by equation (6). In the experimental section 4.3.1, we demonstrate that the convergence
direction of equation (8) alignswith the enhancement direction of projection quality for unknown poses.
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3.3. Pose judgment network
In order to achieve generalization across different image spaces, theGRAFdoes not include rigorous training for
the pose. Consequently, precise correction is required, despite themodel’s continuous understanding of the
pose, particularly when generating images specific to individual patients. Building upon aligning the input poses
to the reference image in section 3.2, we design a pose judgment network to correct errors in the projections
generated under unknownposes, as shown in figure 2. The backbone of the network employed in the study
utilizes VGG16. The inputs consist of twoCTprojections acquired from the same patient but with different
poses, alongwith the pose information corresponding to one of the projections. The primary objective of the
network is to predict the pose of the other projection. In the inference stage, the reference image, the generating
image, and the reference pose are used as inputs to get the pose judged by the network, and the specific process
can be expressed as follows:

a b j a b j¢ ¢ ¢ = ( ) ( )F I I, , , , , , , 9j j j vgg i j i i i16

whereα,β,j represents the three-dimensional pose of the projection.When the predicted pose is close to the
input of the generator, the output of the generator is accepted. Otherwise, the input to the generator is adjusted,
following the strategy outlined below:

x
-

= -q
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I G Z Z v F I I

,
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vgg R G

G s a vgg R G

16

16

Where IR and IG represent the reference projection and generated projection, respectively.When the
difference between the predicted view angle and the input view angle is less than e, the generated image is
accepted. Otherwise, the network input view pose is corrected. During inference, the reference projection’s pose
is chosen as the initial, and a 360° projection is generatedwith it as the center.

3.4. Networkfine-tuning based on frequency-domain regularization
During thefine-tuning process, altering the generator’s parameters carries a significant risk of inducing
distortion in the projections, particularly when dealingwith large angles.When relying solely on a reference
single x-ray, amore practical application is to obtain accurate images for a small-range. In FREEnerf (Yang et al
2023), a frequency-domain regularization approach is employed to train under sparse views, aiming to prevent
network overfitting caused by high-frequency position encoding. Taking inspiration from this approach, we
build upon section 3.2 and apply a frequency-domain regularization to the position encoding in the network’s
input.Wefine-tune the generator’s parameters, gradually reducing the high-frequencymask as the training
epochs progress. This process can be described as follows:

g g a
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0, otherwise
, 11i
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whereα(t) represents the position of themask,T is the total number of training epochs, and as the epochs t
increase, themask is gradually released following the amplitude L. The generator’s parameters are fine-tuned
throughmean squared error between the generated and reference images.When the network focusesmore on
the low-frequency region, inputs with small angles tend to align, thereby alleviatingmode collapse. During
inference, we generate projections ranging from−15° to 15°around the pose of the reference to validate their
quality.

4. Experiment

4.1.Dataset andmetrics
Collecting paired x-ray images andCTdata can lead to errors due to patientmovement and equipment
variations, and it can also subject patients to higher Radiance exposure. Therefore, following the approach of
MEDnerf, we employ digital radiographic radiography (DRR) techniques to obtain simulated projections from5
knee joint CT datasets (Ali et al 2016) and 20 chest CT datasets (Clark et al 2013). These datasets encompass
patients with varying contrasts. During the simulation of projections, we assume that the x-ray source and the
projection panel are parallel. Projections are generated at 5-degree intervals around theZ-axis, resulting in 72
angles for eachCTdataset. The resolution is set to 128× 128.During training, we randomly sample 80%of the
complete patient data, which includes chest data from16 patients and knee data from4 patients. During testing,
we provide a randomview from the remaining patients as a reference and generate projections for the remaining
71 views. This work does not involve experimental procedures with human subjects or animals.
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Wequantitatively evaluate the results based on three visualmetrics: Peak Signal-to-Noise Ratio (PSNR),
Structural SimilarityS (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al 2018). PSNR
and SSIM focusmore on pixel-level differences, while LPIPSmeasures perceptual differences that are highly
correlatedwith human perception. The higher the similarity between images, the closer the PSNR value is to
infinity, the closer the SSIMvalue is to 1, and the closer the LPIPS value is to 0. In the experiments, allmodels are
built using the PyTorch framework and run on a singleNVIDIARTXA6000GPUwith 48GBofmemory. For a
fair comparison, wemaintain uniformhyperparameters across allmodels: position encoding γ(x)= 63, pose
encoding γ(d)= 27, utilizing the Adamoptimizer with a learning rate annealing from10−4 to 10−6 through
cosine annealing, a batch size of 16, and a total of 100 000 iterations.When aligning the generalizationmodels
(Ours, GRAF,MEDnerf) to the images, we uniformly employ PSNR as the outputmetric, considering the
alignment complete when the increase in PSNR is less than 0.5% in every 50 iterations. The pose error limits
e= 0.04. Due to the lack of generalization in FREEnerf (Yang et al 2023), it cannot utilize the training set.We
provide 18 views during testing to establish a comparable benchmarkwith othermodels.

4.1.1. Frequency-domain regularization
Table 5 presents the rendering results of differentmethods after fine-tuning the generator using approach 3.4, all
of whichwere already aligned before the fine-tuning process. It can be observed that within a small-range,

4.2. Comparisonwith state-of-the-artmodels
Wecompare the proposed ACnerf with four state-of-the-artmethods, including twomodels with excellent
generalization capabilities and twomodels specifically designed for sparse view reconstruction. Among them,
GRAF (Schwarz et al 2020) enhances the generalization of the original radiance field by introducing random
noise and utilizing adversarial learningmechanisms during the training phase. In the inference phase, random
noise is treated as a code andmodified to edit the projection. Building upon this,MEDnerf (Corona-Figueroa
et al 2022) further optimizes the training process by subjecting the patches generated byGRAF to three
enhancement schemes with a discriminator, resulting in visually improved images. PIXELnerf (Yu et al 2021b)
leverages a pre-trained classification network (Resnet34) to extract features from reference images and combines
themwith the spatial coordinates of the radiance field as inputs to the network. This incorporation of additional
prior knowledge helps alleviate the information deficiency caused by sparse views. On the other hand, FREEnerf
(Yang et al 2023) considers reasonable constraints and employs frequency-domain regularization in the training
process to prevent overfitting caused by sparse views, but it lacks generalization capabilities. Based on different
practical needs, the experiments investigate the quality of 360° projections and small-range projection quality.

4.2.1. Quantitative comparison
Table 1 reports the performance of variousmodels at 0° to 360°. For generating 360° projections, to prevent
distortion in distant projections caused by changes in generator parameters, two approaches proposed in
sections 3.2 (oursw/o PJ) and 3.3 (ours) are progressively adopted.We can observe that the projection quality of
both schemes of ACnerf outperforms all competitors, especially the LPIPS, which is highly correlatedwith image
perception. The PSNRperformance of PIXELnerf (Yu et al 2021b) is closer to ours on the knee, but not on the
chest, which has amore complex organizational structure. Other schemes that focus on training patterns
without introducing a priori information during training all performbetter on the chest. This confirms the
correctness of ourmotivational direction. Table 2 shows the performance of the differentmodels at−15° to 15°.
In the localized projection (−15° to 15°), we employ thefine-tuning strategy from section 3.4 (ours+) based on
the foundation of section 3.2. In this aspect, we emphasize pixel-level accuracymore strongly, andACnerf
continues tomaintain the highest projection quality. Compared to PIXELnerf (Yu et al 2021b) andGRAF

Table 1.Quantitative comparisons in 0° to 360°were evaluated using PSNR ↑, SSIM ↑, and LPIPS ↓. The best and second-best results are
marked in red and blue, respectively. Our direct baseline is GRAF.
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(Schwarz et al 2020), methods thatfine-tune network parameters based on reference views (MEDnerf (Corona-
Figueroa et al 2022) and FREEnerf (Yang et al 2023)) exhibit distinct advantages.MEDnerf (Corona-Figueroa
et al 2022) achieves the best PSNR results in the chest region at−5° to 5°, but struggles tomaintain performance
away from the reference view.

4.2.2. Qualitative comparison
Figure 3 illustrates the visual results of ACnerf compared to other competitors in the 0 to 360° view.We also
provide depthmaps for each viewpoint. It can be observed that ACnerfmaintains consistent stability across
different viewpoints, and the utilization of the pose judgment network (ours) significantly enhances pose

Figure 3.Comparison of visualization of 0°–360° projections. Rows 2, 4, and 6 are depthmaps representing the distribution of
particles in space.

Table 2.Quantitative comparisons at−15° to 15° and−5° to 5°were evaluated using PSNR ↑, SSIM ↑, and LPIPS ↓. The best and second-
best results aremarked in red and blue, respectively.
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optimization. Although PIXELnerf’s (Yu et al 2021b)PSNR is similar to ours, it notably falls behind in terms of
LPIPS. This discrepancy stems from its projections having correct poses but lacking a substantial amount of
high-frequency details, leading to amarkedly inferior visual perception. From the depthmaps, we can see its
particles scattered on the surface of space. This issue is evenmore severe in FREEnerf (Yang et al 2023), where
particles almost adhere to the outermost layer of space. GRAF (Schwarz et al 2020) generates themost visually
appealing projections, but its pose does n0tmatch the ground truth, as analyzed in section 3.1.MEDnerf
(Corona-Figueroa et al 2022) generates artifacts, and its pose still exhibits significant differences from the ground
truth. The depthmap shows that its spatial particles distort to positionswithout color in the ground truth.

Infigure 4, we present the results of differentmethods rendered from−15° to 15°, with the 5th column
showcasing the skeletal images extracted using contrast transform. In the context of localized projections, pose
differences are almost indiscernible. However, through contrast enhancement, it can be observed that only
ACnerf accurately restored the position and shape of the skeleton.

4.3. Ablation study
In this section, a detailed experimental justification is carried out for the three processes of ACnerf: (1) latent
coded alignment projection; (2) pose judgment network; (3)fine-tuning of the generator parameters when
masking in the frequency-domain. The baselinemodel used is GRAF (Schwarz et al 2020), performed on the
knee dataset (Ali et al 2016).

Figure 4.Visualization results of the−15° to 15° knee projection. The fifth column is the bone image extracted from the−15°
projection using the contrast transform.
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4.3.1. Use of latent codes
When aligning the pre-trainedmodel with the reference projection, PSNRwas employed as the assessment
metric. Table 3 compares alignment peak values, alignment times, and rendered results among three approaches
under a 360° projection: updating only latent codes, updating both the generator and latent codes, and utilizing
latent codes to influence positional encoding.While updating the generatormight lead to a higher alignment
peak, our objective does not solely revolve around attaining alignment. Instead, our focus is on obtaining new
viewpoint projections.Method 3.2 holds advantages regarding alignment time and rendering results.

We plotted box plots (figure 5) of the rendering results as the alignment outcomes grew. As the alignment
results peak, updating the generator leads to divergence due to sacrificing the structure of unknown angles. In
contrast, the alignment outcomes ofmethod section 3.2 converge in the same direction as the rendering quality.

4.3.2. Pose correction
Wehave applied correctivemeasures using approach 3.3 to the adversarial loss-trainedmethodsGRAF (Schwarz
et al 2020) andMEDnerf (Corona-Figueroa et al 2022). Table 4 presents the rendering results for a 360° view. To
enable themodel to output results, we relaxed e to 0.08.Without aligning themodel to the reference projection,
the correction of pose improved both rendering results. However, upon aligning themodel, only themethod of
keeping the generator parameters unchanged demonstrated a noticeable effect, as the inherent distortion in the
projections caused by the network is irregular and uncontrollablewhich is also themotivation behind the design
in section 3.2. the fine-tuning approach of section 3.4 is effective for generators aligned using all registration
methods. In contrast to the levels reported in table 1, allmethods exhibit varying degrees of decrease in the 360°
projections.

Figure 5.Comparison between the alignment ofMEDnerf in section 3.1 (Z andG) and the alignment proposed in section 3.2 (Ours
W/OPJ). The horizontal axes of both (a) and (b) denote the alignment values of the networkwith the reference projection. The
vertical axes represent the average PSNR and LPIPS rendered by the network at the remaining poses, respectively.

Table 3.Comparison of different alignmentmethods.We compare the performance of the two alignment approaches reported in section 3.1
with the performance of our designed scheme in section 3.2 in terms of alignment peaks and alignment times aswell as rendering results. The
alignment peak is evaluated using PSNR, the alignment time in seconds, and the rendering results are evaluated using PSNR ↑, SSIM ↑, and
LPIPS ↓. Optimal and suboptimal results aremarked in red and blue, respectively.

Table 4.The gain on the rendering results after correcting the pose. The second row (Original) is not alignedwith the scheme presented in
section 3.1, and thefifth row is the result obtained by correcting the pose after alignment. The rendering results are evaluated using PSNR ↑,
SSIM ↑, and LPIPS ↓. The results in red in parentheses are the gains.
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5. Conclusion

With the advancement ofNERF technology,many studies utilize it to recovermedical data from a few images.
Among them, inferring new views using only a single image poses is a significant challenges.We reveal that there
is potential in two directions: (1)matchingNERFmodels tomedical images bymore fully exploiting their
generalization capability. (2)Refinement of the reasoning process to accommodate different rendering ranges.
In this paper, we propose ACnerf, which reconstructs the projections of other pose from the projections of a
single pose, withGRAF as the backbone. ACnerf utilizes latent codes to linearly influence positional encoding for
image alignment, preventing changes in the generator’s parameters from causing disruption to the 3D structure.
During inference, a pose judgment network is employed to correct pose, optimizing themodel’s rendering
views. For narrow-range projection rendering, we introduce a refinement technique involving the utilization of
frequency-domainmasks tofine-tune the generator. By adjusting alignment, inference, and rendering scopes,
experimental results on knee and chest data with varying contrasts demonstrate that ACnerf outperforms the
current state-of-the-art Radiance field approaches, effectively reducing artifacts and distortions.
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