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Abstract
Accurate pancreas segmentation is essential for the diagnosis of pancreas disease, while it is still challenging due to the
variable structure and small size of the pancreas. In this paper, we propose a Multi-scale Deformable U-Net with Cos-spatial
and Channel Hybrid Transformer (MDHT-Net) for pancreas segmentation. To mitigate the ambiguity between the codec
stages, the Cos-spatial and Channel Hybrid Transformer (CCHT) module is designed as a novel skip connection, enhancing
the network’s ability to perceive spatial information and reveal the inter-channel relationships within different layers’ features.
Furthermore, the CCHT efficiently aggregates multi-stage contextual information by improving the self-attention mechanism
in two different manners, overcoming the limitation of computational complexity. In addition, to comprehensively understand
deep semantic information, the Multi-scale Feature Adaptive-extraction (MFA) module is proposed to dynamically enhance
the network’s receptive field by integrating the pancreas characteristics of scale variations. The experimental results present
that our proposed MDHT-Net achieves superior performance compared to other existing state-of-the-art methods on two
public pancreas datasets, with the mean Dice coefficient of 91.07±1.19% for NIH and 91.52±0.66% for MSD, respectively.
Given the effectiveness and advantages of our proposed MDHT-Net, it is expected to be a potential tool to assist clinicians in
detecting pancreas disease and making reasonable treatment plans.

Keywords Pancreas segmentation · Deformable convolution · Transformer · Multi-scale information

1 Introduction

Pancreatic cancer is one of the most common and deadliest
malignancies, with a five-year survival rate of less than 5%
[1–3].Accurate pancreas segmentation technology can effec-
tively assist clinicians in the clinical analysis and diagnosis of
pancreatic cancer using computer assistance. In recent years,
with the rapid development of deep learning, the automatic
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segmentation of other organs such as the lungs, kidneys, and
liver has achieved relatively high accuracy [4–6]. However,
accurately segmenting the pancreas from CT images still
presents many challenges. Compared to other organs, the
pancreas exhibits high variability in size, shape, and posi-
tion among different patients, and it typically occupies only
a small portion of the entire CT image volume, as shown in
Fig. 1. Furthermore, the pancreas has weak contrast with sur-
rounding tissues, and its boundaries are often blurry, which
can lead to interference from the background regions in CT
images for deep neural networks, resulting in low segmenta-
tion accuracy [7–9]. Therefore, the pancreas is considered
one of the most complex organs to segment, making the
development of a robust and accurate automatic pancreatic
segmentation model of profound significance.

In 2015, Ronneberger proposed U-Net [10] for medical
image segmentation and attained outstanding performance,
subsequently, many scholars designed a series of U-Net vari-
ants such as R2U-Net [11], U-Net++ [12], TransUNet [13]
and so on.NowadaysU-shaped networks have been themain-
stream framework for medical image segmentation [14, 15].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-024-05780-9&domain=pdf
http://orcid.org/0000-0003-1535-6520


MDHT-Net: Multi-scale Deformable U-Net ... 12273

Fig. 1 CT slices from the two
public pancreas datasets: (a)
Some CT examples from the
NIH pancreas dataset. (b) Some
CT examples from the MSD
pancreas dataset. Three slices of
different cases are randomly
chosen from each dataset

For pancreas segmentation:Oktay et al. [16] proposed a novel
Attention Gate (AG) model that can be integrated into U-Net
to highlight the important salient features of pancreas. Li et al.
[17] proposed three cross-domain information fusion strate-
gies to solve the problem that U-Net can’t distinguish the
regions between pancreas and background in low-contrast
CT images. Li et al. [18] introduced theMultiscale Attention
Dense residual U-shaped network (MAD-UNet) to address
the problems of intraclass inconsistency. Additionally, to
improve the consistency of adjacent CT slices, Li et al.
[19] designed a stack-based U-Net architecture to fuse the
two-dimensional and local three-dimensional context infor-
mation. Although the aforementioned methods improved the
information propagation process in U-shaped architectures
by incorporating inter-slice relationships or adding attention
mechanisms, the lack of specific analysis of pancreatic fea-
tures limited the segmentation performance.

Specially, considering the highly variable appearances
of the pancreas across different patients and slices, Huang
et al. [20] integrated the deformable convolution into U-
Net to flexibly capture the pancreas locations of various
shapes in 2021, the excellent segmentation results demon-
strate deformable convolution is more suitable for pancreas
segmentation compared with traditional standard convolu-
tion. The deformable convolution is illustrated in Fig. 2,
which utilizes an additional parallel standard convolution
layer to learn the offsets for each sampling point of the
input image, and then the obtained offsets are added to origi-
nal sampling positions, thus the deformable convolution can
adaptively adjust predefined receptive field according to the
target.

Since Transformer [21] gained tremendous success in
NLP(Natural Language Processing), Dosovitskiy et al. [22]
first introduced Vision Transformer(ViT) for image classi-

Fig. 2 Illustration of 3 × 3
deformable convolution. The
offset field is learned from the
input feature maps by applying a
standard convolutional layer
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fication and accomplished a immense break through self-
attention mechanism. After that, Transformer has been
widely applied in computer vision in recent years. In the
field of pancreas segmentation: Chen et al. [23] deployed
a channel-wise transformer into 3D U-Net as the skip con-
nection, coordinating global features to assist the network
learning. Cheng et al. [24] sequentially utilized the DenseA-
SPPmodule andTransformer in the center ofU-Net, realizing
the construction of long-range dependency. Qu et al. [25]
proposed a transformer-guided progressive fusion network,
effectively combining the CNN branch and the transformer
branch to enhance the feature representation of the pancreas.

Motivated by the aforementioned methodologies, a novel
network calledMDHT-Net for pancreas segmentation is pro-
posed in this paper. The network employs a coarse-to-fine
segmentation strategy, the pre-trainedU-Net is utilized as the
coarse segmentation network for the fast location of pancreas
regions, and then fed the focused region into the MDHT-Net
for fine segmentation. The proposed MDHT-Net consists of
five layers. To balance the network’s capability to learn var-
ious pancreatic features and the demand for computational
resources, only the third and fourth layers corresponding to
the encoder-decoder in the U-shaped framework are replaced
with dual deformable convolution blocks. The Cos-spatial
and Channel Hybrid Transformer (CCHT) is designed as
a skip connection, improving the self-attention mechanism
to efficiently extract global features from both spatial and
channel dimensions with linear complexity. Furthermore, the
Multi-scale Feature Adaptive-extraction (MFA) module is
proposed to dynamically optimize the network’s receptive
field, facilitating the transmission of multi-scale information
between codecs.

The main contributions of this work can be summarized
as follows:

(1) A novel network MDHT-Net is proposed for pancreas
segmentation, which skillfully integrates the deformable
U-shaped framework with a designed hybrid Trans-
former, thus automatically perceiving position variations
in pancreas feature contours and effectively fusing local
and global contextual information. It makes the network
adaptively process the complex and varied structure of
the pancreas.

(2) A Cos-spatial and Channel Hybrid Transformer (CCHT)
module is proposed by introducing the Cosine Spatial
attentionmechanism (CSA) and Efficient Channel atten-
tion mechanism (ECA). The CSA mechanism explores
the spatial dependency for multi-layer features and real-
izes linear computational complexity through the cosine
decomposition theorem. The ECA mechanism further
establishes inner-relationships between different chan-
nels for global features extraction. The CCHT module
significantly alleviates the ambiguity between codecs,

thereby enhancing the accuracy and robustness of the
decoder’s output.

(3) A Multi-scale Feature Adaptive-extraction (MFA) mod-
ule is developed by the multi-branch atrous convolution
structure with a scale attention mechanism, comprehen-
sively calibrates and optimizes the deep-level semantics
through the regularities of scale variations, thus reducing
the probability of mis-segmentation.

(4) Experimental results on the NIH pancreas dataset(Mean
DSC:91.07±1.19%)and theMSDpancreas datasset(Mean
DSC: 91.52 ± 0.66%) show that our network outper-
forms existing state-of-the-art methods, demonstrating
the effectiveness of our proposed MDHT-Net.

The remainder of this paper is organized as follows: Sec-
tion 2 briefly reviews the related work. Section 3 describes
the architecture of the proposed MDHT-Net in detail. Sec-
tion 4 presents the experimental settings and results. Finally,
discussions and conclusions are provided in Section 5 and
Section 6, respectively.

2 Related work

2.1 Pancreas segmentation

Traditional pancreas segmentation methods mainly include
multi-atlas techniques, region growing algorithms, and statis-
tic shape models [26, 27]. Karasawa et al. [28] proposed a
multi-atlas pancreas segmentation approach based on ves-
sel structure around the pancreas, selecting atlases with high
pancreatic similarity to the unlabeled CT volume. Tam et al.
[29] applied region-growing to label pancreas region, return-
ing the segmented result which has the same characteristics
as the seed point. Hammon et al. [30] incorporated spa-
tial relationships across the pancreas, surrounding organs,
and vessels to acquire a constrained statistical shape model
for pancreas segmentation. However, these methods are
tedious with limited performance due to the manual inter-
vention. Most of the traditional methods achieved low Dice
coefficient(<75%) for pancreas segmentation [19].

Due to the rapid development of deep neural networks,
the method based on deep learning has gradually become
the mainstreammethod in the field of pancreas segmentation
[31, 32], as Table 1 represented. The deep-learning-based
methods for pancreas segmentation can be divided into the
single-stage methods and the two-stage methods. Zheng et
al. [33] proposed a two-dimensional deep learning-based
method to describe the uncertain regions at pancreatic MRI
images in the process of iterative segmentation, gradually
correcting segmentation results and obtaining an 84.37%
Dice coefficient on the NIH dataset. To make full use of
the local context during the segmentation process, Li et al.
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[34] introduced a bi-directional recurrent scheme to optimize
the network and earned an 85.35% Dice coefficient on the
NIHdataset. Considering the small and changeable structural
characteristics of the pancreas, Chen et al. [35] designed a
fuzzy skip connection module to transform the low-level fea-
tures into high-level semantic features, achieving a relatively
impressive Dice coefficient of 87.91% on the NIH dataset in
2022.

Compared with the aforementioned single-stage segmen-
tation methods, the two-stage methods primarily leverage
the coarse localization results from the first stage to assist
the fine segmentation in the second stage network. Dogan
et al. [36] adopted Mask R-CNN to detect the pancreatic
candidate region roughly, then obtained the precise seg-
mentation result through 3D U-Net. To further improve the
segmentation framework from coarse to fine, Qiu et al. [37]
designed a Cascaded Multi-scale Feature Calibration UNet
(CMFCUNet) for pancreas segmentation, attaining a Dice
coefficient of 86.30%on theNIHdataset.Xia et al. [38] incor-
porated Z-axis information with Multi-path Transformer
fusion network(MTr-Net), efficiently addressing the bound-
ary deformation of the pancreas. To overcome the semantic
gap problem between the codec in fine-segmentation stage,
Yao et al. [39] designed different connections for multi-
layer interaction and got a Dice score of 87.87% on the NIH
dataset.

Different from the previous advanced pancreas segmen-
tation methods, the proposed MDHT-NET simultaneously
considers the changeable structural characteristics of the
pancreas and the importance of information interaction dur-
ing the segmentation process. By incorporating deformable
convolutions in deep layers, the network adeptly learns the
spatial position of the pancreas. Furthermore, it aggregates
various attention mechanisms to facilitate effective infor-
mation interaction between the codec stages, resulting in
decoded outputs that are closer to the ground truth and
achieve an excellent Dice coefficient of 91.07 ± 1.19% on
the NIH dataset.

2.2 Attentionmeachnisam

Attention mechanism has been widely applied in com-
puter vision tasks in recent years, which can effectively
extract important information from the region of interest
and suppress irrelevant information [40–42]. The attention
mechanism usually can be divided into spatial attention and
channel attention [43, 44]. Most of the researchers choose
to combine these two kinds of attention for better feature
representation. For instance: Huang et al. [45] proposed a
Discriminative Feature Attention Network for pancreas seg-
mentation, utilizing a Bottleneck Attention Module (BAM)
to learn spatial and channel-wise attention, and successfully

obtain discriminative hierarchical features. Chen et al. [46]
designed an effective Residual Multi-Scale Dilated Atten-
tion (RMSA)module to capture comprehensive inter-channel
relationships and multi-scale spatial features, enhancing the
segmentation of pancreas. Yan et al. [47] incorporated a
hybrid attention module into U-Net, acquiring a more robust
feature representation for pancreas segmentation.

Different from the above methods, we successfully inte-
grate global information and local information in both spatial
and channel dimensions through the CSA mechanism and
ECA mechanism with linear computational complexity, sig-
nificantly enhancing the overall network’s feature extraction
capabilities.

2.3 ViT for medical image segmentation

Transformer was originally proposed by Vaswani et al. [21]
for machine translation, which can model long-range depen-
dencies through the self-attention mechanism and achieve
state-of-the-art performance in the NLP domain. Inspired
by the remarkable performance of Transformer in NLP
domain, many researchers attempted to apply Transformer
in computer vision. Specifically, the Vision Transformer [22]
(ViT) proposed by Dosovitskiy et al. presents that the pure
Transformer-based methods can also perform very well in
computer vision. ViT divides an input image into a series of
fixed-size patches, followed by fed into transformer blocks
for image classification tasks.

To overcome the quadratic computational complexity of
ViT, swim-transformer [48] introduced the window-based
attention mechanism and enhanced local feature interaction
through shifted windows. PVT [49] handled the segmenta-
tion task of high-resolution input images through a progres-
sive pyramid architecture, thus acquiring better performance
with lower computation costs. Additionally, Transformer is
also popular in the field of medical image segmentation.
Swin-Unet [50] constructed a U-shaped network based on
the swim-transformer block formedical image segmentation,
taking full advantage of the Transformer’s global aware-
ness capacity. To address the problem of insufficient medical
data, MedT [51] integrated an additional control mecha-
nism into the self-attention module and further improved the
performance through a Local-Global training strategy. Tran-
sUNet [13] adopted the CNN-Transformer hybrid structure
for medical segmentation primary, which effectively lever-
aged both CNN’s ability for local feature extraction and
the Transformer’s advantage for global information inter-
action. UCTransNet [52] redesigned the skip connection of
the origin U-Net through the multi-scale channel-wise cross-
attention mechanism, significantly optimizing the combina-
tion of U-Net and Transformer.
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3 Method

In this part, an overview of the proposed MDHT-Net is pre-
sented in Section 3.1. The key modules of MDHT-Net: the
Cos-spatial and Channel Hybrid Transformer (CCHT) mod-
ule and the Multi-scale Feature Adaptive-extraction (MFA)
module are introduced in Section 3.2 and Section 3.3 respec-
tively. Finally, the loss function is described in Section 3.4.

3.1 Overview

The overall architecture of the proposed MDHT-Net is illus-
trated in Fig. 3. The coarse location of pancreas region is
accomplished by the pre-trained U-Net from the first stage,
followed by the application of the designed MDHT-Net for
fine segmentation based on the focused pancreas region.
MDHT-Net follows an asymmetric encoder-decoder frame-
work, it mainly consists of four parts: feature encoder, CCHT
module, MFA module, and feature decoder.

Considering the augmented computational resources required
by deformable convolutions to facilitate the network in
learning the complex morphological characteristics of the
pancreas, we select to substitute the third and fourth layers
of the associated encoder and decoder with 3×3 deformable

convolutional blocks. Simultaneously, the initial two lay-
ers continue to employ standard 3 × 3 convolutions for
preliminary feature extraction. To effectively fuse the multi-
scale spatial-wise and channel-wise features from different
encoder levels with sufficient receptive fields, the CCHT
module is designed to connect the encoding path and the
decoding path. To further optimize the receptive field of the
network and adaptively acquire changes in scale, the MFA
module is designed to replace the center part in the origin
U-Net structure. During the encoding phase, the input is
downsampled four times, with each stage halving the spa-
tial dimensions and doubling the number of channels. In the
corresponding decoding phase, the original input dimensions
H ×W ×C are restored through four stages of upsampling.
To better constrain the network convergence, the deep super-
vision mechanism is employed, where the output of each
layer is adjusted to the same dimensions as the ground truth
through a 1×1 convolution followed by an upsampling oper-
ation.

3.2 Cos-spatial and Channel Hybrid Transformer

In order to extract and fuse the effective feature expres-
sions from different layers, we design a Cos-spatial and

Fig. 3 Network architecture of the proposed MDHT-Net
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Channel Hybrid Transformer (CCHT) as the skip connec-
tion between codecs, as depicted in Fig. 4(a). Initially,
we perform a reshape operation on the multi-scale feature
maps originating from the encoder: X1 ∈ RH×W×C , X2 ∈
R

H
2 ×W

2 ×2C , X3 ∈ R
H
4 ×W

4 ×4C , X4 ∈ R
H
8 ×W

8 ×8C . These fea-
ture maps are adjusted to have uniform channel dimensions
C and flattened into 1D sequences, then concatenate along
the token dimension to form Xs ∈ RN×C . Subsequently,
within theCos-spatial transformer,we employCosineSpatial
Attention(CSA) mechanism to fuse and interconnect spatial
dependency within the multi-stage feature maps, simulta-
neously enhancing local information representation while
extracting global context information. Furthermore, within
the channel transformer, we utilize the Efficient Channel
Attention (ECA)mechanism to explore the intrinsic relation-
ships among these multi-stage feature maps in the channel
dimension.

Self-attention mechanism has proven to be effective in
compensating for the global information overlooked byCNN
networks, but its persistent bottleneck in quadratic compu-
tational complexity. Considering the extensive lengths of
multi-stage feature sequences, in order to strike an ideal bal-
ance between computational efficiency and performance, we
adopt theCosineSpatialAttentionmechanism (CSA) to com-
prehensively capture global spatial context and local details
for inputs with linear computational complexity.

As shown in Fig. 4(b), the input sequence Xs is first
mapped to Q ∈ RN×d , K ∈ RN×d ,V ∈ RN×d respectively,
where d represents the embedding dimension in transformer.
To avoid the aggregation of negatively correlated contex-
tual information, the CSA mechanism employs the ReLU
function as the linear mapping kernel function to enforce
non-negative attributes. By applying the associative prop-
erty, the left multiplication of Q and K can be transformed

Fig. 4 The illustration of the Cos-spatial and Channel Hybrid Trans-
former (CCHT) module. (a) The architecture of CCHT module. (b)
The Cosine Spatial Attention mechanism is employed to extract global
spatial context information and reduce the quadratic computational

complexity of self-attention mechanism by the Cosine decomposition
theorem. (c) The Efficient Channel Attention mechanism is applied to
extract the dependency between any two channels with linear compu-
tational complexity
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into the right multiplication of K and V to reduce the com-
putational complexity from O(N 2) to O(N ), which can be
formulated as:

Oi =
∑

j (ReLU (Qi )ReLU (K j ))
T Vj

∑
j ReLU (Qi )ReLU (K j )T

= ReLU (Qi )
∑

j (ReLU (K j ))
T Vj

ReLU (Qi )
∑

j ReLU (K j )T
(1)

Furthermore, the cosine-based re-weightingmechanism is
introduced to focus on the distribution of the attentionmatrix,
thereby expediting model convergence and enhancing train-
ing stability. The formula is as follows:

S(Qr
i , K

r
j ) = Qr

i K
rT
j cos(

π

2
× i − j

N
) (2)

Where Qr
i represents ReLU (Qi ),Kr

j represents ReLU
(K j ), and S(Qr

i , K
r
j ) is the obtained spatial attention map.N

refers to the length of the sequence, and i, j ∈ (1, N )denote
the position of each token. A smaller value of i − j means
a closer proximity between tokens, leading to an increase
in attention weights. Conversely, the opposite holds true.
Therefore, it effectively penalizes theweights associatedwith
tokens that aremore distantly positionedwhile enhancing the
significance of local contextual information within shorter
token distances.

According to the Ptolemy’s theorem, the equation above
can be decomposed into:

Qr
i K

rT
j cos(

π

2
× i − j

N
) = (Qr

i cos(
π i

2N
))(Kr

j cos(
π j

2N
))T

+(Qr
i sin(

π i

2N
))(Kr

j sin(
π j

2N
))T

(3)

From Eq. 5, the CSA mechanism improves the non-
decomposable non-linear softmax operation in self-attention
into an efficient decomposable linear operation with reweight-
ing mechanism:

{
Qcos

i = (Qr
i cos(

π i
2N )), Kcos

j = (Kr
j cos(

π j
2N ))

Qsin
i = (Qr

i sin(
π i
2N )), Ksin

j = (Kr
j sin(

π j
2N ))

(4)

CRA = Qcos(KcosV ) + Qsin(KsinV ) (5)

After obtaining spatial information from multi-stage fea-
tures, it is essential to further explore the inter-channel
relationships. We employ the Efficient Channel Attention
mechanism (ECA), which also possesses linear computa-
tional complexity, to extract the dependency between any
two channels within the multi-stage features. As shown in
Fig. 4 (c), the input sequences Xc ∈ RN×C is mapped into

Q ∈ RN×d , K ∈ RN×d and V ∈ RN×d at first, and then the
channel attentionmatric S(K

′
i , V

′
j ) can be acquired by aggre-

gating the KT and V. This expression can be formulated as:

S(K
′
i , V

′
j ) = so f tmax(

K√
N

)T × V (6)

From the above equation, it can be observed that the vector
kTi ∈ R1×N of the i th channel in KT build relationship with
the other channels by weighting with v j ∈ RN×1. Finally,
the channel attention output, which is obtained by applying
the channel attention matric S(K

′
i , V

′
j ) to weight Q, can be

formally defined as:

CH A = so f tmax(
Q√
N

) × S(K
′
i , V

′
j ) (7)

After the concatenated sequences pass through the Cos-
spatial transformer and Channel transformer, we then split
them according to the corresponding length of each layer’s
input from the encoder and transform them into 2D feature
maps to input the decoder. The CCHT module ingeniously
integrates skip connections from different encoder levels,
facilitating a seamless fusion of multi-size information, thus
effectively mitigating the issue of semantic inconsistency in
information transmission across codecs. Furthermore, the
CCHT module introduces an innovative approach to skip
connections, uniquely emphasizing the combination of spa-
tial and channel factors, resulting inmore comprehensive and
robust feature representations.

3.3 Multi-scale Feature Adaptive-extractionmodule

To further facilitate themulti-scale context information trans-
mission and improve the receptive fields, the MFA (Multi-
scale Feature Adaptive-extraction) module is designed to
cascade the bottom of the encoder and decoder. As illustrated
in Fig. 5, the proposed MFA module consists of a multi-
branch parallel atrous convolution structure with the AFA
(Adjacent-scale Feature Adaptive-fusion) module. Firstly,
We perform parallel atrous convolutions on the input fea-
ture maps obtained from the last layer of the encoder, using
dilation rates of 1, 2, and 4, respectively. To minimize the
introduction of additional parameters, we employ a shared-
weight strategy for the convolutional kernels across these
three branches. After that, the feature maps derived from
adjacent branches following atrous convolution are subjected
to scale information interaction through the AFA module. In
the AFA module, it can be seen that the input feature maps
f1, f2 are concatenated firstly, and then the concatenated
features f12 are reflected into scale attention map through
1× 1 convolution and softmax operation from two different
branches.
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Fig. 5 The architecture of
Multi-scale Feature
Adaptive-extraction module

For one branch, the concatenated feature f12 is com-
pressed into a scale attention martic S12 using 1 × 1
convolution, which is subsequently rescaled to the (0, 1)
range by applying a sigmoid operation. For the other branch,
f12 is also mapped as two scale attention matrices(s1, s2)
after convolution and softmax operations. The final fused
map f s12, spanning adjacent scales, is derived as the weighted
sumof f1, f2 and f12, eachmultiplied by their corresponding
scale attention matrices:

f s12 = s1 ⊗ f12 + s1 ⊗ f1 + s2 ⊗ f2 (8)

The f s12 is further fused with f3 flowing the similar
approach described above. Finally, the aggregatedmuti-scale
maps f123 can be represented as:

f123 = CBR( fin + f s23) (9)

Where CBR(·) denotes 1 × 1 convolution,batch normal
and ReLU activation, fin denotes the input feature maps,
f s23 is the fused map of the f s12 and f3. Thus, multi-scale
information can be adaptively extracted by theMFAmodule,
aiding the network in flexibly perceiving scale variations.

3.4 Loss function

In this paper, the hybrid loss consists of binary cross-entropy
loss and dice loss is employed to optimize network train-

ing. Binary cross-entropy loss is commonly used for binary
classification tasks and dice loss is effective for the class
imbalanced problems in segmentation tasks, which can be
formulated as:

⎧
⎨

⎩

Lbce = − 1
N

∑N
i=1

[
yi log ŷl + (1 − yi ) log 1 − ŷl

]

Ldice = 1 − 2
∑N

i=1 yi ŷl∑N
i=1 yi+

∑N
i=1 ŷl

(10)

where ŷl represents the predicted value of the network, yi is
the value of corresponding ground truth, andN is the number
of pixels. Therefore, the hybrid loss can be defined as:

Lseg = Lbce + Ldice (11)

To fully optimal training of parameters across different
network depths and enhance overall robustness, the deep
supervision strategy is adopted to refine the hybrid loss.
Finally, the total loss function can be defined as:

Ltotal =
4∑

i=1

λi L
i
seg (12)

Where i = (1, 2, 3, 4) represents the ith layer prediction
of MDHT-Net, the proportional coefficients λ1 λ2 λ3 and λ4
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are set as 0.1, 0.3, 0.6 and 1 respectively according to the
impact of each layer.

4 Experimental results

4.1 Datasets

The performance of the proposed segmentation network
MDHT-Net is validated with the NIH and MSD pancreas
datasets.

NIH_Pancreas: The NIH_Pancreas dataset consists of 82
abdominal contrast-enhanced CT scans from the National
Institutes of Health (NIH) Clinical Center. The sizes of the
scans vary from 512 × 512 × 181 to 512 × 512 × 466 with
a thickness between 1.5-2.5 mm.

MSD_Pancreas: The MSD_Pancreas dataset consists of
281 abdominal contrast-enhancedCTscanswith labeled pan-
creas and pancreatic tumors from the Medical Segmentation
Decathlon (MSD) challenge. The sizes of the scans vary from
512×512×37 to 512×512×751with a thickness of 2.5mm.
Following previous studies on the MSD dataset, we treat the
pancreas and pancreatic tumor as a whole for segmentation.

A fourfold cross-validation approach is employed for both
datasets. We divided the original data into four pieces (NIH:
#1-#20, #21-#40, #41-#61, and #62-#82;MSD: #1-#70, #71-
#140, #141-#210, and #211-#281). We chose one piece as a
test set each time and the remaining three pieces as a training
set, repeating four times and averaging.

4.2 Implementation details

The proposed network is implemented on the PyTorch frame-
work with one NVIDIAGeForce RTX 3090 graphics card of
24GB memory. During data preprocessing, all CT images
intensity values are truncated into range [-100,240] HU
firstly, and then normalized to be the range of [0,1]. Differ-
ent data augmentation techniques including random rotations
(90◦, 270◦), randomflipping, and random scaling are adopted
to reduce overfitting.

In the training phase, the input images are resized to 128×
128 for both NIH and MSD datasets. Stochastic gradient
descent (SGD) is applied as the optimizer with an initial
learning rate 1×1e-4 and the momentum 0.9. The batch size
is set to 8 and the proposed network MDHT-Net is trained
for 40 epochs.

4.3 Evaluationmetrics

To evaluate the performance of the proposedMDHT-Net, we
quantitatively analyze the segmentation results with 5 evalu-
ation metrics, including Dice Similarity Coefficient (DSC),
Sensitivity, Specificity,Average Symmetric SurfaceDistance

(ASD) and Hausdorff Distance (HD). These metrics can be
expressed as:

DSC = 2 × | f pre ∩ fGT |
(| f pre| + | fGT |) (13)

Where f pre represents the prediction result of the model
and fGT denotes the real mask information. DSC is one of
the most common indexes to evaluate the effectiveness of
image segmentation method. It calculates the spatial overlap
between the segmentation and ground truth. The closer its
value is to 1, the more similar it is.

Sensi tivi t y = T P

T P + FN
(14)

Speci f ici t y = T N

T N + FP
(15)

Where True Positive (TP) indicates that the prediction
is positive and the ground truth is positive. False Positive
(FP) indicates that the prediction is positive but the ground
truth is negative. False Negative (FN) represents prediction
is negative, but ground truth is positive. Sensitivity is used to
measure the proportion of positive samples correctly recog-
nized by themodel out of the total number of actual positives.
Specificity is used tomeasure the proportion of negative sam-
ples correctly recognized by the model and the total number
of actual negatives. The higher the sensitivity and specificity,
the lower the model’s recognition error rates for true fore-
ground and true background, respectively.

HD = max

{

max
x∈ fGT

min
y∈ f pre

d{x, y}, max
x∈ fGT

min
y∈ f pre

d{y, x}
}

(16)

Where x and y denote the voxels of the ground truth and
the prediction results, respectively, and d{x, y} represents the
Euclidean distance between x and y. The Hausdorff distance
is used to assess whether the edge of the pancreas is com-
pletely segmented. The smaller the Hausdorff value is, the
more complete the pancreatic margin segmentation.

ASD = 1

2

{

mean
x∈ fGT

min
y∈ f pre

d{x, y},mean
x∈ fGT

min
y∈ f pre

d{y, x}
}

(17)

The average symmetric surface distance is used to evalu-
ate the accuracy of edge segmentation. The smaller the ASD
value is, the more accurate the pancreatic margin segmenta-
tion.
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4.4 Segmentation results on NIH dataset

4.4.1 Comparison to the state-of-the-art

The effectiveness of MDHT-Net is first evaluated using
NIH pancreas segmentation dataset. From Table 2, it can
be seen that the proposed MDHT-Net achieves state-of-
the-art performance in most of the indicators compared
to previous advanced pancreas segmentation methods. It
is worth noting that the mean dice coefficient of MDHT-
Net is 91.07 ± 1.19%, exhibiting a statistically significant
3.18% improvement in segmentation performance compared
to the second-ranked results [35]. In terms of Sensitivity and
Specificity, the results from MDHT-Net also increased by
0.5% and 0.83% respectively compared with the second-
best method [38], resulting in a decreased error rate for
pancreas segmentation. Simultaneously, the minimal Float-
ing Point Operations (FLOPs) metric implies that the model
has a lower computational complexity. The MDHT-Net not
only achieves a reduction of approximately 4.49G Flops
compared to suboptimal results [37] but also remarkably
outperforms it in terms of the DSC metric. It demonstrates
that the MDHT-Net effectively strikes an optimal balance
between computational cost and performance improvement.
What’s more, the MDHT-Net saves over half of the testing
time compared to themajority ofmethods during the segmen-
tation process. The shortest testing time implies that MDHT
holds promising prospects for clinical application.

4.4.2 Comparison to the mainstream segmentation models

In order to further confirm the superiority of the proposed
MDHT-Net, we also compare our segmentation networkwith

Fig. 6 Boxplots of DSC for different methods on the NIH dataset

the mainstream segmentationmodels, includingMedT, PVT,
SwinUNet, TransUNet, and UCTransNet. For the sake of
fairness, all thesemodels are executedwithin the same exper-
imental environment. As for the DSC shown in Fig. 6, the
proposed MDHT-Net not only outperforms all other models
but also presents a more concentrated data distribution.

Table 3 shows the performance comparison using the
distance-based indicators of ASD and HD, it is clear that
the proposed MDHT-Net obtains superior performance with
the smallest values for ASD andHD,which is consistent with
the presentation of the DSC index.

Figure 7 presents the visual comparison of different
mainstream medical image segmentation models on the
NIH dataset, intuitively reflects that our proposed MDHT-
Net effectively mitigates over-segmentation and under-

Table 2 The results (measured by the DSC, Sensitivity,Specificity,Flops, and Testing time) of pancreas segmentation on NIH datasets

Method Year DSC(%)↑ Sensitivity(%)↑ Specificity(%)↑ Flops(G)↓ Testing time↓
Zheng et al. [33] 2020 84.35±7.69 86.23±6.35 85.01±6.04 66.25 7-8min

Li et al. [19] 2020 85.68±3.21 84.37±7.45 89.44±6.31 37.32 5-6min

Li et al. [34] 2021 85.33±4.11 82.74±8.20 89.62±7.25 55.62 7-8min

Li et al. [18] 2021 86.30±4.52 84.93±5.15 86.41±5.30 32.21 5-6min

Huang et al. [20] 2021 87.23±6.70 89.95±7.53 90.25±7.28 86.45 10-11min

Chen et al. [46] 2022 85.29±4.75 84.55±8.29 89.03±7.01 30.27 5-6min

Chen et al. [35] 2022 87.89±2.45 85.72±4.41 87.71±4.02 53.24 7-8min

Qiu et al. [37] 2023 86.28±5.01 86.95±5.02 88.56±5.35 29.34 1-2min

Xia etal. [38] 2023 87.02±3.26 91.08±4.85 90.99±3.79 36.27 5-6min

Yao et al. [39] 2023 87.85±2.74 88.32±3.61 90.53±4.06 59.83 7-8min

Ours 2024 91.07± 1.19 91.58± 1.31 91.82± 1.24 24.85 1-2min

↑ means the higher the better and ↓ represents the opposite. Optimal results (described by mean ± std) are shown in bold
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Table 3 The results (measured by the ASD and HD) of pancreas seg-
mentation on the NIH dataset

Method ASD(mm)↓ HD(mm)↓
MedT [51] 0.88±0.14 2.20±0.10

PVT [49] 1.01±0.11 2.30±0.09

SwinUNet [50] 0.81±0.11 2.16±0.10

TransUNet [13] 0.66±0.10 2.00±0.09

UCTransNet [52] 0.64±0.08 1.99±0.09

Ours 0.55± 0.08 1.93± 0.08

↓means the lower the better. Optimal results (described bymean± std)
are shown in bold

segmentation issues in the segmentation results, which
proves that the MDHT-Net can accurately extract the global
context information through CCHT module. Moreover,
MDHT-Net’s advanced capability to interact and fuse multi-
scale feature information further enhances the model’s
accuracy, resulting in a more complete segmentation of the
pancreatic structure compared to other segmentation net-
works.

4.4.3 Visualization of results

From the DSC distribution of four-fold cross-validation on
the NIH dataset in Fig. 8, it can be seen that across dif-
ferent folds are remarkably consistent, demonstrating the

Fig. 8 Violinplots of DSC for four-fold cross-validation onNIH dataset

high robustness of the MDHT-Net network in mitigating the
impact of sample variations.

From the visualization of some segmentation results on the
NIHdataset in Fig. 9, it is evident that ourmethodmaintains a
high level of concordance with the manually labeled ground
truth annotations, demonstrating its remarkable segmenta-
tion accuracy. Notably, despite the variances in pancreas
shape and spatial distribution across the three cases (case
39#, case 56#, case 72#) within the CT images, our method
consistently and precisely delineates the pancreas.

Fig. 7 The visual comparison of different mainstream medical image segmentation models on the NIH dataset. The red regions represent the GT
and the predicted results by different models. (a) Local clip-focused view of the pancreas region. (b) Global view of pancreas segmentation in CT
slice
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Fig. 9 The visualization of segmentation results for different cases in the NIH dataset. The red solid line denotes the ground truth, and the blue
solid line denotes the prediction results

4.5 Segmentation results onMSD dataset

4.5.1 Comparison to the state-of-the-art

To further verify the effectiveness of MDHT-Net, four-
fold cross-validation experiments, as well as a series of
comparative experiments, are conducted on the public pan-
creas MSD dataset, maintaining the same experimental

environment as NIH pancreatic segmentation. As shown
in Table 4, the proposed MDHT-Net continues to demon-
strate significant advantages across the four metrics when
compared to previous state-of-the-art methods.The DSC
shows a impressive enhancement of 3.02% compared to
the second-ranked results [34]. Simultaneously, the high-
est Sensitivity and Specificity indicate a high degree of
similarity between the results of our method and manual

Table 4 The results (measured
by the DSC,Sensitivity,
Specificity, and Testing time) of
pancreas segmentation on MSD
datasets

Method Year DSC(%)↑ Sensitivity(%)↑ Specificity(%)↑ Testing time↓
Li et al. [18] 2021 88.50±2.78 91.02±4.92 89.59±3.71 8-9 min

Chen et al. [46] 2022 76.55±8.30 69.34±11.82 70.53±10.76 8-9min

Chen et al. [35] 2022 86.76±4.56 82.1±8.71 80.11±8.05 8-9min

Qiu et al. [37] 2023 85.56±4.68 84.56±6.37 86.72±5.52 3-4min

Xia et al. [38] 2023 87.79±4.34 89.84±8.02 89.51±8.17 8-9min

Ours 2024 91.52± 0.66 91.23± 1.23 92.15± 1.08 3-4min

↑ means the higher the better and ↓ represents the opposite. Optimal results (described by mean ± std) are
shown in bold
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Fig. 10 Scatterplots of DSC for different methods on the MSD dataset

delineations. It demonstrates that MDHT-Net effectively
reduces the probabilities of target foreground omission
and background misclassification during the segmentation
process. Additionally, occupying a shorter testing time com-
pared with previous advanced segmentation methods on the
MSD dataset further validates the potential applicability of
MDHT-Net.

4.5.2 Comparison to the mainstream segmentation models

As depicted in Fig. 10, MDHT-Net still maintains a slight
advantage over other mainstream segmentation models in
terms of the DSC metric, obtaining consistently distributed
results with no outliers, which highlights the model’s robust-
ness.

The comparison of distance-based indicators is pro-
vided in Table 5. The lowest values for ASD (0.52 ± 0.07
mm) and HD (1.89 ± 0.05 mm) substantiate the accu-
racy and completeness of MDHT-Net’s edge segmentation
performance.

Similarly, visual assessments of the segmentation results
achieved by different models on the MSD dataset are pre-
sented in Fig. 11. Overall, the MDHT-Net is observed to
retain pancreatic shape features that closelymatch the ground
truth. Particularly, for the case of challenging structures
within the pancreas, as exemplified in the third row in Fig. 11,
MDHT-Net exhibited superior performance when compared
to the slightly less favorable results obtained by TransUNet
and UCTransNet.

4.5.3 Visualization of results

As shown in Fig. 12, the results of the four-fold cross-
validation experiments on the MSD dataset consistently

maintained mean DSC values above 90%, further substan-
tiating the model’s superiority and robustness. From Fig.
13, it is evident that MDHT-Net maintains outstanding seg-
mentation performance, even in scenarios with significant
structural variations within the same case. For instance, in
the case of 16, although there is a topological disconnection
in the fourth image, the overall structural integrity is still
reasonably well-preserved in the segmentation results.

5 Discussion

5.1 Ablation study

To assess the individual impact of each component on the
performance enhancement of the proposed MDHT-Net, the
ablation experiments are conducted on the NIH dataset for
analysis. Specifically, the Deformable U-shape network is
chosen as the baseline, Baseline+CCHT indicates the addi-
tion of the CCHT module based on the Baseline, while
Baseline+ MFA denotes the addition of the MFA module
based on the Baseline.

It is obvious that the DSC score is Significantly improved
with the addition of CCHT module, by 3.16% compared
with the Baseline. This reflects that the CCHTmodule brings
significant performance improvements by alleviating ambi-
guities between the codec, further validating its ability to
extract global information based on the linear complexity
transformer-architecture. As shown in Fig. 14, the over-
all contour features of Baseline+CCHT’s visual results are
obviously more consistent with Ground Truth compared to
the Baseline. What’s more, a notable 1.14% decrease in
DSC variance compared to the Baseline has been achieved,
demonstrating that the CCHT module markedly enhances
network robustness and effectively promotes the interaction
of multi-layer information.

With the integration of the MFAmodule into the baseline,
the overall segmentation performance has been improved.

Table 5 The results (measured by the ASD and HD) of pancreas seg-
mentation on the MSD dataset

Method ASD(mm)↓ HD(mm)↓
MedT [51] 0.75±0.12 2.02±0.10

PVT [49] 0.82±0.10 2.10±0.06

SwinUNet [50] 0.78±0.07 2.05±0.08

TransUNet [13] 0.65±0.08 2.00±0.07

UCTransNet [52] 0.62±0.08 1.98±0.06

Ours 0.52± 0.07 1.89± 0.05

↓means the lower the better. Optimal results (described by mean± std)
are shown in bold
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Fig. 11 The visual comparison of different mainstream medical image segmentation models on the MSD dataset. The blue regions represent the
GT and the predicted results by different models. (a) Local clip-focused view of the pancreas region. (b) Global view of pancreas segmentation in
CT slice

This demonstrates that, within the framework of the base-
line utilizing direct concatenation-based skip connections,
the MFA module can effectively leverage the scale variation
regularities to dynamically optimize the network’s receptive
field, thereby extracting more accurate features of the pan-
creas.

In summary, combinedwithMFAandCCHTmodules, the
proposed MDHT-Net achieves the best performance across
the five metrics. Simultaneously, as illustrated in Fig. 14,

Fig. 12 Violinplots of DSC for four-fold cross-validation on MSD
dataset

the proposed MDHT-Net’s visual results are closest to the
Ground Truth compared to other variations of the network
(Table 6).

5.2 Generalization ablity

To verify the generalization performance of the proposed
model, we conducted experiments on the public skin cancer
dataset ISIC 2018. Following the official dataset partitioning,
2,594 images are used for training, with 100 images for vali-
dation and 1000 images for testing. Finally,the MDHT-NET
achieved an excellent Dice coefficient of 91.54 ± 1.02% on
the test set. The remarkable segmentation accuracy achieved
in the task of skin cancer demonstrates that the pancreas seg-
mentation network,MDHT-NET, can be successfully applied
to other medical image segmentation tasks, showcasing its
efficient generalization ability. We look forward to further
exploring the potential of applying this network to a wider
range of medical image segmentation tasks in future research
endeavors.

Despite significant differences in data format, distribution,
and target morphology compared to pancreas segmentation
dataset, MDHT-NET still achieved superior segmentation
performance. As illustrated in Fig. 15, the red lines repre-
sent the Ground Truth (GT) of skin cancer, while the blue
lines represent the predictions. For melanomas of varying
shapes and sizes in different cases, MDHT-NET’s segmen-
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Fig. 13 The visualization of segmentation results for different cases in the MSD dataset. The red solid line denotes the ground truth, and the blue
solid line denotes the prediction results

tation results closely match the GT. Even for samples with
significant color and contour fluctuations, as shown in the
first and fifth rows of Fig. 15, respectively, MDHT-NET can
accurately capture their structural features. As depicted in
Table 7, compared to the suboptimal pure transformer-based
network(SwinUNet), the Dice coefficient and Sensitivity of
MDHT-NET are increased by 0.82% and 0.92% respectively
for skin cancer segmentation. It demonstrates MDHT-NET
effectively combines local spatial positional information
extracted by deformable convolution with global informa-
tion obtained from various attention mechanisms.

5.3 Limitations and future work

Althoughour proposedmethodhas achieved competitive per-
formance, there are still some limitations.

On one hand, for some CT slices with blurred back-
grounds, the pancreatic boundaries tend to adhere to sur-
rounding soft tissues andorgans, leading tomis-segmentation
by the network. In Fig. 16(a), the arrow indicates the area
where the target pancreas in theCT scan exhibits low contrast

compared to the surrounding background. Consequently, the
predicted pancreas shape shows deviations influenced by
neighboring organs. In the future, wewill employ the follow-
ing strategies to enhance the segmentation quality of blurry
edge samples: Introducing edge operators in the network to
enhance edge features in the feature maps; Proposing a novel
edge loss function to supervise the pancreas edge features.

On the other hand, the proposed MDHT-Net is a two-
stage segmentation method, where the fine segmentation
results of MDHT-NET rely to some extent on the accuracy
of the coarse segmentation network in locating the pancre-
atic region. For some scattered small pancreatic segmentation
targets, the network tends to miss these areas, resulting in
under-segmentation, as shown in Fig. 16(b). To tackle this
issue, we plan to design an enhancement module that inte-
grates a coarse segmentation network and afine segmentation
network, fostering mutual learning between them. We aim
to construct a novel coarse-to-fine segmentation framework
that enables end-to-end training, mitigating the problem of
missed segmentation by the coarse segmentation network for
small, scattered pancreas targets.
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Fig. 14 The visualization of ablation experimental results on the NIH dataset. The leftmost column indicates that GT is outlined by solid red lines
in the original image

Table 6 The ablation experimental results of the proposed network on the NIH dataset

Method DSC(%)↑ Sensitivity(%)↑ Specificity(%)↑ ASD(mm)↓ HD(mm)↓
Baseline(Deformable U-Net) 87.66±2.37 88.30±2.24 89.35±2.01 0.79±0.15 2.13±0.13

Baseline+CCHT 90.82±1.23 90.70±1.53 91.64±1.50 0.57±0.08 1.94±0.08

Baseline+ MFA 89.18±1.89 90.12±1.82 91.05±1.77 0.68±0.12 2.02±0.13

MDHT-Net 91.07± 1.19 91.58± 1.31 91.82± 1.24 0.55± 0.08 1.93± 0.08

↑means the higher the better and ↓ represents the opposite. Optimal results (described by mean ± std) are shown in bold

Fig. 15 The visualization of segmentation results on the ISIC 2018 dataset. The red line represents GT and the blue line represents prediction

Table 7 The results(measured
by the DSC, Sensitivity,
Specialty, ASD and HD) of skin
cancer segmentation on the
ISIC2018 dataset

Method DSC(%)↑ Sensitivity(%)↑ Specificity(%)↑ ASD(mm)↓ HD(mm)↓
MedT 87.89±4.89 88.23±4.76 96.35±5.03 15.25±7.65 31.35±10.52

PVT 87.62±4.53 88.16±4.82 96.62±4.79 17.31±7.09 32.46±10.01

SwinUNet 90.72±3.65 92.12±3.58 96.80±3.93 10.82±5.31 28.55±6.88

TransUNet 89.42±3.01 90.01±4.15 95.96±4.01 13.15±5.05 31.02±6.72

UCTransNet 89.53±2.45 90.07±2.09 96.81±3.13 12.87±4.91 30.14±4.99

Ours 91.54± 1.02 93.04± 1.16 96.81± 1.47 10.05± 2.78 25.30± 3.05

↑ means the higher the better and ↓ represents the opposite. Optimal results (described by mean ± std) are
shown in bold
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Fig. 16 The visualization of
segmentation failure cases on
the NIH dataset. The leftmost
column shows the original CT
images.The red line represents
GT and the blue line represents
prediction in the second column.
(a) An segmentation case of
pancreatic blurred boundaries.
(b) An segmentation case of
dispersed pancreatic small
regions

6 Conclusion

In this paper, a novel pancreas segmentation network is
proposed, namely MDHT-Net, which skillfully integrates
the spatial attention mechanism, channel attention mecha-
nism and scale attention mechanism to fully extract context
information and promote multi-layer information interac-
tion. The dual deformable convolution blocks are utilized in
the third and fourth layers of MDHT-Net, flexibly capturing
the changeable features of the pancreas while also avoid-
ing the dependence on computing resources. The Cos-spatial
and Channel Hybrid Transformer is introduced to establish
long-term dependency by improving the self-attentionmech-
anism, and comprehensively extracting global features from
both spatial and channel dimensions. Simultaneously, the
Multi-scale Feature Adaptive-extraction module is designed
to optimize the receptive field of the network and adaptively
extract the multi-scale information. Extensive experiments
on the NIH dataset and MSD dataset are performed, which
demonstrate that our proposedMDHT-Net can achieve state-
of-the-art performancewhen compared to previous advanced
models.
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