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ABSTRACT
Accurate medical image segmentation is crucial for clinical diagnosis and disease treatment. However, there are still great chal-
lenges for most existing methods to extract accurate features from medical images because of blurred boundaries and various 
appearances. To overcome the above limitations, we propose a novel medical image segmentation network named TS-Net that 
effectively combines the advantages of CNN and Transformer to enhance the feature extraction ability. Specifically, we design a 
Multi-scale Convolution Modulation (MCM) module to simplify the self-attention mechanism through a convolution modulation 
strategy that incorporates multi-scale large-kernel convolution into depth-separable convolution, effectively extracting the multi-
scale global features and local features. Besides, we adopt the concept of feature complementarity to facilitate the interaction be-
tween high-level semantic features and low-level spatial features through the designed Scale Inter-active Attention (SIA) module. 
The proposed method is evaluated on four different types of medical image segmentation datasets, and the experimental results 
show its competence with other state-of-the-art methods. The method achieves an average Dice Similarity Coefficient (DSC) of 
90.79% ± 1.01% on the public NIH dataset for pancreas segmentation, 76.62% ± 4.34% on the public MSD dataset for pancreatic 
cancer segmentation, 80.70% ± 6.40% on the private PROMM (Prostate Multi-parametric MRI) dataset for prostate cancer seg-
mentation, and 91.42% ± 0.55% on the public Kvasir-SEG dataset for polyp segmentation. The experimental results across the four 
different segmentation tasks for medical images demonstrate the effectiveness of the Trans-Scale network.

1   |   Introduction

Medical image segmentation plays an important role in medi-
cal image analysis, which can assist doctors in more efficient 
disease diagnosis [1, 2]. The main target of it is to accurately fa-
cilitate internal organs and extract lesions from the background 
pixels on diverse biomedical images, such as Computerized 
Tomography (CT) or Magnetic Resonance Imaging (MRI) [3, 4]. 

Medical image segmentation is a challenging task because of 
various shapes and blurred boundaries [5, 6], as shown in 
Figure 1. At the same time, it requires a lot of time and effort to 
annotate medical images. Therefore, traditional manual-based 
medical image segmentation is tedious and limited.

In recent years, deep learning (DL) has provided state-
of-the-art performance for various vision tasks such as 
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image classification, segmentation, and recognition [7–9]. 
Convolutional neural networks (CNNs) have been used widely 
to extract complex features accurately through simple oper-
ations [10]. U-Net is one of the most popular medical image 
segmentation networks. Since the inception of U-shaped ar-
chitecture, numerous researchers have been committed to 
advancing its capabilities to better suit the demands of med-
ical image segmentation. For instance, Attention U-net [11] 
applied an attention gate (AG) mechanism to focus on struc-
tures of interest in medical images automatically, regardless of 
their size or shape. In addition, MA-UNet [12] introduced the 
multi-scale information based on a more lightweight Attention 
U-net. Although CNN models have remarkable representation 
capabilities, they still suffer from inevitable limitations such as 
lacking the ability to understand global contexts owing to the 
intrinsic locality of convolution operations.

To address the limitations of CNN, Transformer [13] inte-
grates the self-attention mechanism and demonstrates signifi-
cant success in natural language processing tasks. Thereafter, 
the Transformer has gradually been introduced to the field of 
computer vision [14–16]. The Vision Transformer [17] brought 
about a breakthrough in using Transformers for vision tasks, 
adopting patch-based input and multi-head self-attention. 
Building upon ViT's success, SegFormer [18] was proposed in 
2021 by Xie et al. as a Transformer-based semantic segmen-
tation approach, which surpassed the performance of other 
existing models. Nowadays, Transformer-based models have 
received increasing attention in the field of medical image 
segmentation. Medical Transformer [19] proposed gated axial 
attention to construct the main encoder block with a LoGo 
training strategy, successfully addressing the issue of insuf-
ficient medical sample data. PVT [20] leveraged a progressive 
shrinking pyramid structure in Transformer to overcome the 
limitation of scale invariance for pure Transformer models. 
TransUNet [21] made a pioneering contribution to the field of 
medical image segmentation by integrating Transformer into 
CNN. Specifically, TransUNet employed a combination of 
convolutional and attention mechanisms to extract global and 
fine-grained local context, thus leveraging the advantages of 

both Transformer and CNN. Through the effective connection 
of the fused channel-wise information with the decoder fea-
tures, UCTransnet [22] reduced the ambiguity in the medical 
image segmentation process and narrowed the semantic gap, 
setting a new state-of-the-art standard in the field of medical 
image segmentation.

Different from the aforementioned methodologies, we propose a 
novel segmentation network called Trans-Scale that effectively 
leverages the deep –shallow layers interaction and the scale 
variation rules to obtain more accurate feature representations. 
Our approach embraces a two-stage segmentation framework, 
which progressively refines segmentation from coarse to fine 
levels. Initially, a pre-trained U-Net is utilized to extract the 
approximate contour of the target region for coarse detection. 
The fine-grained segmentation framework is built upon U-Net 
architecture, with the skip connection comprising the scale 
inter-active attention (SIA) module and the multi-scale convolu-
tion modulation (MCM) module. The SIA module employs the 
concept of feature complementarity, which utilizes deep seman-
tics to supplement shallowly neglected information. By adopt-
ing subtraction operations to obtain the reverse weight map of 
the encoding features, the information that is easily overlooked 
in the encoding process can be added to the decoding process. 
It is worth noting that the MCM module dynamically adjusts 
the depth-wise separable convolution kernel size based on the 
scale of layer-specific features, facilitating efficient multi-scale 
convolutional modulation. The fine-grained segmentation net-
work consists of five layers, where the fusion of encoder-derived 
feature maps and upsampled high-level semantic features from 
deep layers is accomplished through the SIA module in the pre-
ceding four layers. Subsequently, the MCM module leverages 
multi-scale convolutional modulation to further enhance the 
network's performance.

The main contributions of this work can be summarized as 
follows:

1.	 The proposed segmentation network Trans-Scale leverages 
the fusion of CNN and Transformer structures through the 

FIGURE 1    |    Instances of medical images with their respective semantic segmentation annotations. The red area corresponds to the segmentation 
target, showing significant differences in morphological positions among different medical image segmentation samples.
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designed MCM module, which employs the multi-scale 
convolutional modulation strategy to simplify the self-
attention mechanism, effectively extracting the multi-scale 
global features and local features.

2.	 We employ a SIA module to focus on the information de-
tails lost from different layers through feature comple-
mentarity, which applies deep semantics to supplement 
shallowly neglected information. We further design the 
Edge loss function based on wavelet decomposition that 
refines the segmentation results by emphasizing the high-
frequency texture features.

3.	 Experimental results on the NIH pancreas dataset, the 
MSD pancreas cancer dataset, the private PROMM 
(Prostate Multi-parametric MRI) prostate cancer dataset, 
and the Kvasir-SEG polyp dataset validate the effective-
ness of the proposed Trans-Scale network compared to the 
state-of-the-art methods.

The paper is organized into six sections: Section 2 briefly reviews 
the related work. Section 3 describes the proposed Trans-Scale 
network and the edge loss function. In Section  4, we present 
the experiments with detailed analysis and results comparison. 
Finally, a discussion is provided in Section 5, and the conclusion 
is explained in Section 6.

2   |   Related Work

Despite the persistent need for further improvement, deep learn-
ing methods for medical image segmentation have reached a 
relatively mature stage of development. There has been a nota-
ble emergence of exceptional deep-learning models for medical 
image segmentation in recent years.

Pancreatic cancer is a serious threat to human life and health 
due to its exceptionally high malignancy, necessitating the ex-
ploration of an efficient approach for accurately segmenting 
both the pancreas and pancreatic cancer. Primarily, in the realm 
of pancreas segmentation: Oktay et al. [11] designed a novel at-
tention gate (AG) model to emphasize various target structures 
of the pancreas. Cai et al. [23] designed a novel CNN-RNN ar-
chitecture to tackle inter-slice spatial non-smoothness during 
the pancreas segmentation process. To overcome the segmenta-
tion difficulties for uncertain regions, Zheng et al. [24] proposed 
an iterative workflow for progressively refining segmentation 
results. Li et al. [25] designed a multiscale attention mechanism 
to enhance semantic information through integrating scale vari-
ations. Wang et al. [26] proposed a dual-input FCN, which fur-
ther improved the pancreas segmentation performance by the 
contrast-specific algorithm. To capture the pancreatic features 
flexibly, Huang et al. [27] combined a deformable convolution 
module with U-Net. Additionally, Liu et  al. [28] presented an 
ensemble-based multiloss FCN for accurate feature representa-
tion. Except that, Li et al. [29] introduced the double adversarial 
networks with a pyramidal pooling module to achieve satisfac-
tory results. Chen et al. [30] developed a fuzzy skip connection 
to facilitate the information transmission of variable pancreas 
targets between codecs. To efficiently capture the global features 
of the pancreas, Qiu et al. [31] integrated a residual Transformer 
block into U-Net in 2023.

Moreover, in the realm of pancreatic cancer segmentation: Wang 
et al. [32] presented an Inductive Attention Guidance Network 
that utilizes multi-instance learning to improve segmentation 
accuracy for pancreatic ductal adenocarcinoma. Chen et al. [33] 
proposed a model-driven approach based on spiral transforma-
tion, addressing the challenge of incorporating 3D contextual 
information into 2D models. Li et al. [34] proposed a position-
guided deformable UNet to effectively tackle variations in pan-
creatic cancer segmentation. To mitigate the uncertainty caused 
by image registration in multi-modal MRI, Li et al. [35] designed 
a novel multi-scale adversarial network. Li et al. [36] proposed 
a dual-meta-learning method that leverages both common 
knowledge and salient information to enhance the pancreas 
cancer segmentation performance. Mahmoudi et al. [37] intro-
duced a hybrid model that ingeniously ensembles the Attention 
U-Net and TAU-Net [38] for pancreatic cancer segmentation. Li 
et  al. [39] Proposed a 3D FCN with three temperature-guided 
modules to effectively overcome local optima problems. Ju 
et  al. [40] developed an approach based on spatial contextual 
cues and activated location offsets for precise pancreatic cancer 
segmentation. Considering that pancreatic cancer usually occu-
pies a small region, Wang et al. [41] proposed a novel two-stage 
segmentation strategy for pancreatic cancer, combining a light-
weight CNN for initial localization and an improved U-shaped 
network for fine segmentation. What's more, Liang et  al. [42] 
developed a novel framework for automatic gross tumor volume 
segmentation, matching expert radiology oncologists' perfor-
mance by integrating multimodal images and daily MRI scans. 
Li et  al. [43] designed a CausegNet that focuses on extracting 
intrinsic structure features to reduce interference from back-
ground noise. Qiu et al. [44] proposed a cascaded segmentation 
framework based on a multi-scale U-Net to accurately locate 
pancreatic tumors of different sizes in 2024.

Prostate cancer is also a highly prevalent malignant disease. For 
prostate cancer segmentation, Zhang et al. [45] achieved compet-
itive prostate cancer segmentation results by integrating channel 
and position attention mechanisms into the generator network of 
GAN [46]. Liu et al. [47] introduced a cascading pyramid convo-
lution module and a double-input channel attention module to 
preserve small target features across different scales, resulting in 
dependable segmentation of prostate cancer (PCa) lesions. Song 
et al. [48] proposed the DMSA-V-Net, which is capable of learn-
ing comprehensive spatial structure features, strengthening the 
image understanding ability to effectively segment PCa lesions.

Although the above segmentation methods based on deep learn-
ing can automatically segment the organs or lesions area with a 
certain accuracy, the lack of medical data samples hinders the 
feature representation ability of the network. In order to better 
address the issues of inadequate feature extraction, we propose 
the Trans-Scale network to make full use of context information 
through the SIA module and MCM module. We further design the 
Edge loss function based on wavelet decomposition to overcome 
the problem of blurred edges and refine the prediction results.

3   |   Method

In this section, we will delineate more details of the Trans-
Scale network for medical image segmentation. We first 
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introduce the overall structure of the two-stage segmentation 
network. Then, Section 3.1 presents the SIA module based on 
a complementary concept, and Section 3.2 analyzes the MCM 
module using a convolution modulation strategy to achieve 
a more efficient self-attention mechanism in VIT. Finally, 
Section 3.3 elaborates on the edge loss function based on wave-
let decomposition.

The overview of the proposed Trans-Scale segmentation net-
work is shown in Figure 2. The model employs a coarse-to-fine 
two-stage segmentation framework. Specifically, we first use 
the pre-trained U-Net as the coarse segmentation network to de-
tect the probable pancreas region and then feed it into the Trans-
Scale network for fine segmentation.

The model framework adopts a symmetrical codec structure, 
and U-Net is used as the benchmark framework of the network. 
The network has a total of five layers. The encoder expands the 
receptive field through continuous downsampling operations, 
the channels' numbers are doubled layer by layer, from 64 to 
512, and the corresponding encoded feature map size is halved 
per layer. The decoder uses upsampling to gradually restore the 
concatenated feature map to the original resolution. The skip 
connection mainly consists of the SIA module and the MCM 
module. In the first four layers, the feature maps obtained by 
the encoder and the up-sampled advanced semantic features 
from the fifth layer are integrated through the SIA module to 
complete the fusion of information between features of differ-
ent scales. The SIA module makes up for the lack of attention 
to information by using high-level semantic information. Then 
we use the MCM module to further realize a more efficient 
self-attention mechanism through a convolutional modulation 
strategy and dynamically adjust the convolution kernel size 
based on the scale of layer-specific features, which skillfully 
complement the advantages of CNN and Transformer to en-
hance the segmentation performance. To improve network 
robustness, apply a deep supervision mechanism to upsample 

each decoder layer's output to match the ground truth size for 
supervised learning.

3.1   |   Scale Inter-Active Attention Module

After U-Net encoding, diverse feature maps are generated at 
varying scales, capturing the semantic information of the orig-
inal image across multiple layers. According to the framework 
of the traditional U-Net, the obtained feature maps will be used 
as the skip connection to directly perform the concatenation 
operation on the channel dimension with the upsampled high-
level features. However, the direct concatenation ignores long-
distance dependencies to a certain extent, thus affecting the 
enhancement of model performance. Inspired by the idea of fea-
ture complementarity, we propose the SIA module, which uses 
deep semantic information to supplement shallow-level easily 
overlooked detailed features. Meanwhile, it makes up for the 
attention of the proposed Trans-Scale Net to the region infor-
mation that has not been paid attention to, so as to achieve more 
effective fusion between features.

The structure of the SIA module is presented in Figure 3. The SIA 
module acts on the feature maps output by the first four layers 
of the encoder. By performing an upsampling operation on the 
features of the next layer to match the scale of the features of this 
layer, the idea of complementary information between features is 
used to make up for the information details lost by the network, so 
as to realize the fusion between multi-scale features.

Specifically, we define the feature map of this layer as 
Fi(i = 1, 2, 3, 4), and first perform upsampling and convolution 
operations on the feature map of the next layer Gi+1 to obtain 
feature map Gi with the same size and dimension as Fi. Then 
the two feature maps are sent to the SIA module together. In 
the SIA module, we first use the Sigmoid [49] activation func-
tion to transform Fi to obtain a weight, which represents the 

FIGURE 2    |    Trans-Scale algorithm framework. A novel SIA (Scale Inter-active Attention) module and MCM (Multi-scale Convolution Modulation) 
module are designed in the skip connection part of the network to promote the information transmission between codec and codec. The Deep 
Supervision is conducted to enhance the robustness of the Trans-Scale network.
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region of interest that the current feature Fi focuses on. And 
the inversion operation is implemented to obtain the reverse at-
tention weight, which represents the regional information that 
the current feature Fi may ignore. Then the obtained result is 
multiplied element-wise with the feature Gi containing deep 
advanced semantic information to realize attention weighting. 
The operation fuses information of different scales by using the 
idea of feature complementarity. After using the complementary 
features of this layer to filter the deep advanced semantic feature 
Gi, the residual connection is used to retain the original features 
of this layer, and supplement the neglected information details. 
Finally, the multi-layer perceptron is used to further realize the 
fusion of multi-scale features. The SIA module uses information 
interaction between features of different scales to make up for 
the missing information in this layer, and realizes the selection 
of segmentation target features. The overall process of the SIA 
module can be expressed by Equation (1):

Among them, � represents the Sigmoid activation function that 
generates the weight, 

⨀

 represents the element-wise product op-
eration, and the feature Fi of this layer, the upsampled Gi and the 
output Fi

fuse
 have the same scale.

3.2   |   Multi-Scale Convolution Modulation Module

After the fusion features Fi
fuse

 of four different scales are ob-
tained through the SIA module, they are sent to the MCM 
module. The MCM module uses convolution modulation to 
implement a more efficient self-attention mechanism, thereby 
completing the fusion of information between features. The 
architecture of the MCM module is shown in Figure 4. Unlike 
the self-attention mechanism in VIT which generates atten-
tion weight A by multiplying Q and KT, the attention weights 
A in the MCM module are obtained by k × k depthwise sep-
arable convolutions [50]. Then, the obtained result is multi-
plied element-by-element by the V obtained through the linear 
mapping (Conv 1 × 1) to achieve further attention fusion. The 

(1)Fi
fuse

=MLP
[(

1 − 𝜎
(

Fi
))

⊙ Gi + Fi
]

FIGURE 3    |    The illustration of the SIA module. Taking the reverse of the encoder feature weights captures easily overlooked details.

FIGURE 4    |    The architecture of the Multi-scale Convolution Modulation. Utilizing depth-wise separable convolutions at different scales to weight 
the encoded features at each layer optimizes the network's scale-awareness capability.
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information across channels can be integrated through linear 
mapping. The specific process can be expressed by the follow-
ing formula:

where 
⨀

 represents element-wise product, WA and WV  are 
weight matrices of two linear maps, and DConvk×k represents 
k × k depthwise separable convolution. Multi-scale convolu-
tional modulation is achieved by adjusting the size of depth-
wise separable convolutional kernels according to the scale 
of features in different layers. In the specific implementation 
process, considering that small-scale deep features have a large 
receptive field, we use small convolution kernels to match 
small-scale features, thus the size of the corresponding depth-
separable convolution kernels k × k is sequentially set as 11 
× 11, 9 × 9, 7 × 7, and 5 × 5, aligned with the number of network 
layers from top to bottom.

By setting depth-separable convolution kernels of different sizes, 
the multi-scale convolution modulation is realized, which fur-
ther enhances the ability of the network to extract multi-scale 
features.

Finally, we send the four different-scale features generated by 
the MCM module and the underlying features generated by the 
encoder to the U-Net decoder and perform feature fusion layer 
by layer through the concatenation operation. We employ the 
deep supervision strategy after the decoder to further improve 
the robustness of the network. Specifically, the output feature 
maps from the end of each layer are represented as Out0, Out1, 
and Out2, respectively, up-sampled to the same size as the 
original image for final loss calculation.

3.3   |   Edge Loss Function Based on Wavelet 
Decomposition

Owing to the slight size of the lesion area, blurred boundaries, 
and low contrast with surrounding tissues and organs, most 
segmentation networks pay too much attention to the redun-
dant back area, which affects the segmentation performance. 
Based on this, we design an edge loss function based on wave-
let decomposition to increase the attention to the edge of the 
target, so as to achieve a more refined segmentation result. 
Wavelet decomposition [51] has the ability of multi-resolution 
analysis that allows extracting high-frequency texture details, 
particularly at image edges. By introducing wavelet decompo-
sition into the segmentation task, the attention to object edges 
can be improved.

Specifically, we implement wavelet decomposition on both pre-
diction and ground truth to extract high-frequency texture infor-
mation of object edges, where the high-frequency components 
include horizontal high frequency (H), vertical high frequency (V) 
and diagonal high frequency (D). Figure 5 demonstrates the effect 
of first-order wavelet decomposition on pancreatic cancer ground 
truth. As shown in Figure 5, indicates the result of using a low-
pass filter to transform the image in the horizontal and vertical 
directions sequentially. indicates that the original image is trans-
formed with the low-pass filter in the vertical directiofirstly, and 
thesentnd to the high-pass filter to perform the convolution op-
eration in the horizontal direction to obtain the horizontal high-
frequency information. Correspondingly, means that the low-pass 
filter is used to perfothe rm convolution operation in the hori-
zontal direction, and then the high-pass filter is used to perform 
convolution in the vertical direction to obtain the vertical high-
frequency information. represents the diagonal high-frequency 
information of the original image obtained by successively imple-
menting the convolution on the image using a high-pass filter in 
the horizontal and vertical directions.

Finally, we apply L1 loss [52] on the two-dimensional plane 
for each direction component, and accumulate them to obtain 

(2)A=DConvk×k

(

WAF
i
fuse

)

(3)V =WVF
i
fuse

(4)Attention=A⊙V

FIGURE 5    |    The effect display of first-order wavelet decomposition. The high-frequency texture information is extracted by horizontal high fre-
quency (H), vertical high frequency (V), and diagonal high frequency (D).
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the final edge loss. The specific process can be expressed by 
Equation (5):

where Ŷ  represents the prediction, Y represents the ground 
truth, L1 =

∑N
i=1

�

�

ŷi − yi��, ŷi and yi denotes the the i-th pixel of 
prediction and the ground truth respectively, and N represents 
the total number of pixels.

4   |   Experimental Results

4.1   |   Datasets

We evaluate the performance of the proposed network on 
four different medical image segmentation datasets: (1) The 
public NIH(National Institutes of Health)pancreas segmen-
tation dataset, which contains 82 contrast-enhanced abdom-
inal 3D CT scans. The sizes of each CT volume vary from 
512 × 512 × 181 to 512 × 512 × 466. The dataset is randomly di-
vided into four subsets of 21, 21, 20, and 20 following the four-
fold cross-validation, (2) The public Medical Segmentation 
Decathlon (MSD) Challenge pancreatic cancer segmentation 
dataset, which contains 281 abdominal enhanced CT scans 
with pancreatic cancer annotations. The sizes of each CT 
volume vary from 512 × 512 × 37 to 512 × 512 × 751. The data-
set is divided into four parts of 70, 70, 71, and 71 according 
to the four-fold cross-validation, (3) The private PROMM 
(Prostate Multi-parametric MRI) prostate cancer segmenta-
tion dataset provided by the Shanghai Tongji hospital, which 
contains mpMRI sequences (ADC, T2W, and DWI) of 171 
prostate cancer cases. Each sample contains 20–26 images. 
Following common settings for the prostate cancer segmenta-
tion task [53], we experiment with 5-fold cross-validation, and 
(4) The public Kvasir-SEG Polyp Segmentation Dataset con-
sists of 1000 RGB images of gastrointestinal polyps with their 
respective ground truths. The pixel dimensions of the images 
range from 332 × 487 to 1920 × 1072. Following the official 
recommendation, the dataset is divided into 880 for training 
and 120 for testing.

The above datasets differ greatly in data distribution, imaging 
principle and segmentation target shape, among which the pri-
vate prostate cancer segmentation dataset collected from hos-
pital further strengthens the validation of model generalization 
performance.

4.2   |   Evaluation Metrics

To evaluate the segmentation performance of our Trans-
Scale network, we utilize popular metrics, including the 
Dice Similarity Coefficient (DSC), Precision, Recall, Average 
Symmetric Surface Distance (ASD) and 95% Hausdorff Distance 
(HD). These metrics can be defined as follows:

(1) DSC measures the similarity between the ground truth and 
the prediction, which is widely used for medical image segmen-
tation tasks.

(2) Precision measures the proportion of the correctly predicted 
foreground pixels to the total predicted foreground pixels.

(3) Recall measures the proportion of the correctly predicted 
foreground pixels to the foreground pixels of ground truth.

(4) ASD is used to evaluate the accuracy of edge segmentation, 
which measures the average distances between the surface of 
the prediction and the ground truth.

(5) HD is used to evaluate the completeness of target boundary 
segmentation, which measures the edge contour distance of 
both the prediction and the ground truth.

where Ŷ  and Y  refer to the prediction and the ground truth respec-
tively, S

(

Ŷ
)

 denotes the edge point set of the segmentation pre-
diction, S(Y ) denotes the ground truth edge point set and d

{

y, ŷ
}

 
denotes the Euclidean distance between pixel y and pixel ŷ.

4.3   |   Implementation Details

Our framework is constructed using the PyTorch platform and 
trained on a NVIDIA GeForce RTX 3090 graphics card with 
24GB memory. The input images are resized to 128 × 28 due 
to memory constraints. The model is optimized using stochas-
tic gradient descent (SGD). The initial learning rate is set to 1 
× 1e−4, with a momentum setting of 0.9.

The loss function used is the sum of the dice loss [54], the bi-
nary cross-entropy loss [55], and the edge loss function based 
on wavelet decomposition. Among them, the dice loss, which is 
commonly used in image segmentation tasks, can be defined as 
Equation (11):

and the binary cross-entropy loss can be defined as Equation (12):

(5)Ledge
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 10981098, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/im

a.70064 by E
ast C

hina U
ni O

f Sci &
 T

ech, W
iley O

nline L
ibrary on [27/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 17 International Journal of Imaging Systems and Technology, 2025

so the final combined loss function is formulated as Equation (13):

where N is the number of pixels, ŷi is the predicted pixel result of 
the network, yi is the value of the corresponding ground truth. 
The deep supervision strategy is employed to strengthen the 
robustness of the designed Trans-Scale Net. We refine the loss 
function during training by assigning proportional coefficients 
of 1, 0.6, 0.3, and 0.1 to each layer's output including prediction, 
Out2, Out1, and Out0, respectively, in accordance with their 
respective degrees of contribution for network performance. 
The specific training flow of the proposed TS-Net is given by 
Algorithm 1, the feature symbols correspond to the input and 
output of each module.

4.4   |   Segmentation Results on NIH Dataset

To comprehensively evaluate the performance of the model, 
the proposed model Trans-Scale in this section will first be 
compared with other advanced pancreas segmentation meth-
ods. Moreover, based on the public NIH pancreas segmentation 
dataset, the results are compared and analyzed with the classic 
medical image segmentation models under the same experimen-
tal conditions.

4.4.1   |   Comparison With State-Of-The-Art Pancreas 
Segmentation Methods

Table 1 exhibits the comparison of evaluation results on NIH 
pancreas segmentation datasets. Since the proposed network 
TS-Net utilizes the SIA module and MCM module to fully 
complete the interlayer interaction, the loss of details is re-
duced as much as possible. The TS-Net achieves the best pan-
creas segmentation performance among the eleven methods 
(Table  1) with DSC, Precision, and Recall (± standard devi-
ation) values of 90.79 (±1.01)%, 90.62 (±2.37) % and 90.27 
(±1.65) %, respectively. The ASD and HD are 0.56 (±0.06) mm 
and 1.93 (±0.05) mm, respectively, which also indicates that 
the similarity between the results of our method and manual 
delineations is high. Furthermore, it is noteworthy that our 
method exhibits the lowest standard deviation for each metric. 
The lowest standard deviation demonstrates our method's en-
hanced robustness and stability across varied CT scans com-
pared to other approaches.

4.4.2   |   Comparison With the Classic Medical Image 
Segmentation Models

Figure  6 presents that the proposed Trans-Scale network 
outperforms the classic segmentation models (MedT, PVT, 
TransUNet, and UCTransNet) on the pancreas segmentation 
task. From the boxplot component of the raincloud plot, we 

(12)Lbce= −
1

N

N
∑

i=1

[

yi log
(

ŷi
)

+
(

1−yi
)

log
(

1− ŷi
)]

(13)Lfinal_loss=Ldice+Lbce+Ledge

TABLE 1    |    The performance (evaluated by the DSC, Precision, Recall, ASD, and HD) of pancreas segmentation on the NIH dataset.

Method DSC (%) Precision (%) Recall (%) ASD (mm) HD (mm)

Oktay et al. [11] 83.1 ± 3.8 82.5 ± 7.3 84 ± 5.3 — —

Cai et al. [23] 83.3 ± 5.6 84.5 ± 6.2 82.8 ± 8.37 — —

Li et al. [29] 83.31 ± 6.32 84.09 ± 8.65 83.30 ± 8.54 — —

Liu et al. [28] 84.10 ± 4.91 83.60 ± 5.85 85.33 ± 8.24 — —

Zheng et al. [24] 84.37 83.10 86.26 — —

Li et al. [25] 86.10 ± 3.52 84.97 ± 6.18 86.43 ± 5.30 1.27 ± 0.43 4.40 ± 2.99

Qiu et al. [31] 86.25 ± 4.25 — — — —

Wang et al. [26] 87.4 ± 6.8 89.5 ± 5.8 87.7 ± 7.9 2.89 ± 4.78 18.4 ± 28.19

Huang et al. [27] 87.25 ± 3.27 88.98 89.97 — —

Chen et al. [30] 87.91 ± 2.65 90.43 ± 3.77 85.77 ± 4.61 0.73 ± 0.16 —

Ours 90.79 ± 1.01 90.62 ± 2.37 90.27 ± 1.65 0.56 ± 0.06 1.93 ± 0.05

Note: Optimal values are shown in bold. “—” indicates the data are not reported in the literature.

ALGORITHM 1    |    Training of proposed TS-net model.
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can observe that the proposed Trans-Scale network achieves 
the highest DSC score with minimal fluctuation range, which 
presents the superiority of our method. Additionally, a more 
densely packed distribution of data point colors and the peak 
of the half violin plot intuitively reflect the robustness of the 
Trans-Scale network.

To further demonstrate the advantages of the network, Table  2 
compares the other indicators with the classic Transformer-based 
segmentation models on the NIH dataset. The proposed segmenta-
tion network Trans-Scale significantly outperforms other models 
with all p-values < 0.05 (Dsc index, t-test). It further demonstrates 
that TS-Net effectively integrates the MCM module to promote 
multi-level feature interaction and the SIA module to compensate 
for lost details, thereby enhancing segmentation performance.

Figure  7 illustrates a visual comparative analysis of pancreas 
segmentation outcomes between our proposed network and the 
classic medical image segmentation models, utilizing the NIH 
dataset for evaluation. The ground truth is delineated within 
the original image in the leftmost column. From Figure 7, we 
can see that the segmentation results provided by our proposed 

network Trans-Scale exhibit a closer fit to the ground truth and 
obtain improved continuity compared to the segmentation re-
sults of other models. Specifically, as indicated in the first row 
of Figure 7, the Trans-Scale network delineates the edge of the 
pancreatic head and tail (highlighted within the yellow box) 
more completely compared to other models.

4.5   |   Segmentation Results on MSD Dataset

Since the datasets and codes of some pancreatic cancer seg-
mentation tasks are not publicly available, the comparison 
with other pancreatic cancer segmentation models is based 
on the pancreatic cancer segmentation data reported in the 
literature.

4.5.1   |   Comparison With State-Of-The-Art Pancreatic 
Cancer Segmentation Methods

Table 3 shows the comparison of evaluation results on different 
pancreatic cancer segmentation datasets. Since the pancreatic 

FIGURE 6    |    Performance comparison (DSC) with different classic segmentation models in a raincloud plot for the NIH dataset. Most of the DSC 
scores of our proposed model are above 0.9.

TABLE 2    |    The performance (evaluated by the DSC, Precision, Recall, ASD, and HD) of pancreas segmentation on the NIH dataset. The p-value 
is obtained by comparing the DSC of ours with other methods. Optimal values are shown in bold.

Method DSC (%) Precision (%) Recall (%) ASD (mm) HD (mm) p-value

MedT [19] 85.50 ± 7.91 86.45 ± 6.14 86.89 ± 7.02 0.87 ± 0.22 2.17 ± 0.13 2.99 × e−11

PVT [20] 84.82 ± 1.27 87.33 ± 2.39 85.38 ± 3.17 1.01 ± 0.07 2.29 ± 0.06 3.54 × e−13

TransUNet [21] 88.59 ± 2.48 86.57 ± 3.27 89.13 ± 3.85 0.66 ± 0.12 2.01 ± 0.13 1.26 × e−10

UCTransNet [22] 88.87 ± 1.29 87.72 ± 2.56 88.52 ± 3.21 0.62 ± 0.08 1.99 ± 0.06 4.53 × e−9

Ours 90.79 ± 1.01 90.62 ± 2.37 90.27 ± 1.65 0.56 ± 0.06 1.93 ± 0.05 —
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cancer region is smaller than the pancreatic organ and has 
blurred edges, the pancreatic cancer segmentation index is still 
at a relatively low level. The upper part of the table is the in-
dicator results on the private pancreatic cancer segmentation 
datasets, and the lower part is the indicator distribution on 
the public MSD dataset. The proposed network Trans-Scale 
achieves a DSC score of 76.62%, which is superior to the DSC 
indicators on other pancreatic cancer segmentation datasets 
and performs well on the MSD pancreatic cancer segmentation 
dataset. The precision of 87.27% and the recall of 82.43% indicate 
that the designed network Trans-Scale has a higher segmenta-
tion accuracy and a lower probability of misdiagnosis. The ASD 
distance of 1.17 mm and the HD distance of 2.33 mm prove that 
the segmentation result of the designed pancreatic cancer seg-
mentation network Trans-Scale is closer to the ground truth on 
the edge. The smaller variance fluctuation proves that the model 
has higher robustness.

4.5.2   |   Comparison With the Classic Medical Image 
Segmentation Models

Figure  8 illustrates the superior performance of our Trans-
Scale network compared to classic Transformer-based seg-
mentation models for pancreatic cancer segmentation. The 
diverse shape of pancreatic cancer, being smaller and more 
complex compared to the pancreas, poses a significant seg-
mentation challenge, with model DSC predominantly ranging 
between 0.7 and 0.8.

The comparison of DSC score further validates the advan-
tages of Trans-Scale network from two perspectives: Firstly, 
the higher DSC score substantiates the effectiveness of our 
proposed model in pancreatic cancer segmentation. It can 
be clearly seen that our network's DSC values are mainly 
distributed above 0.7 compared to other models. Secondly, 

FIGURE 7    |    Comparison of the visualization results for different classic medical image segmentation models on the NIH dataset. The ground 
truth is delineated within the original image at the leftmost column. Segmentation regions with clear distinctions between different models are high-
lighted with yellow boxes.

TABLE 3    |    The performance (evaluated by the DSC, Precision and Recall, ASD, and HD) of pancreatic cancer segmentation on different datasets.

Method Dataset DSC (%) Precision (%) Recall (%) ASD (mm) HD (mm)

Mahmoudi et al. [37] 138 Cases 57.30 ± 15.00 57.80 ± 23.00 78.00 ± 9.00 — 3.73 ± 0.78

Wang et al. [32] 800 Cases 60.29 ± 21.60 — — — —

Li et al. [36] 631 Cases 64.16 — — — —

Li et al. [35] 327 Cases 65.60 ± 15.32 — — 3.01 ± 4.16 —

Liang et al. [42] 40 Cases 73.00 ± 9.00 — — 1.82 ± 0.84 8.11 ± 4.09

Li et al. [34] Public(MSD)
281 Cases

50.12 ± 30.86 — — — —

Li et al. [36] 57.53 — — 6.64 14.78

Li et al. [39] 59.85 — 63.07 3.77 —

Wang et al. [41] 63.40 ± 23.67 — — — —

Ours 76.62 ± 4.34 87.27 ± 8.09 82.43 ± 7.77 1.17 ± 0.14 2.33 ± 0.10

Note: Optimal values are shown in bold. “—” indicates the data are not reported in the literature.
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our network's predictions also exhibit minimal fluctuations, 
demonstrating its remarkable stability.

Furthermore, Table  4 shows that the designed segmentation 
network Trans-Scale achieves higher precision and recall on the 
MSD dataset compared with other methods. This demonstrates 
that TS-Net produces fewer false positives and false negatives in 
the segmentation results for pancreatic cancer.

Figure 9 reflects the comparison of the visualization results of 
pancreatic cancer segmentation between our proposed network 
and the classic segmentation models on the MSD dataset, where 
the purple is the ground truth, and the sky blue is the predic-
tion of different networks. From Figure  9, we can see the fol-
lowing: on the one hand, for the pancreatic cancer region with 
irregular edges, the prediction results of the proposed Trans-
Scale model are generally consistent with the ground truth in 
terms of shape and structure; on the other hand, the proposed 
model is closer to the ground truth in the target contour com-
pared with other methods, showing the outperforming feature 
extraction ability of the model. Although the pancreatic cancer 
area to be segmented is smaller in size than the pancreas, and 

the redundant background in the CT image occupies a larger 
area to some extent, the prediction mitigates the occurrences of 
over-segmentation or under-segmentation on the target edge as 
much as possible when compared with other methods.

4.6   |   Segmentation Results on Prostate PROMM 
Dataset

The prostate cancer segmentation experiment is conducted on the 
dataset provided by Shanghai Tongji Hospital. Since the PROMM 
dataset is private, we only compare the Trans-Scale network with 
the classic medical image segmentation models.

Figure 10 shows the DSC scores of the five-fold cross-validation 
of the Trans-Scale network on the PROMM prostate cancer 
segmentation dataset, which reflects that our network can 
balance the differences between different samples and achieve 
accurate prostate cancer segmentation. For the prostate seg-
mentation task with a smaller data sample size, the proposed 
Trans-Scale network also demonstrates effective extraction of 
target features.

FIGURE 8    |    Performance comparison (DSC) with different classic segmentation models in raincloud plot for MSD dataset. The average DSC 
achieved by our segmentation model exceeds that of other models.

TABLE 4    |    The performance (evaluated by the DSC, Precision, Recall, ASD, and HD) of pancreatic cancer segmentation on the MSD dataset.

Method DSC (%) Precision (%) Recall (%) ASD (mm) HD (mm) p-value

MedT [19] 74.20 ± 7.65 82.82 ± 9.07 80.06 ± 10.24 1.29 ± 0.18 2.42 ± 0.12 3.25 × e−14

PVT [20] 71.47 ± 5.65 82.29 ± 8.90 79.95 ± 9.07 1.43 ± 0.15 2.60 ± 0.09 5.12 × e−15

TransUNet [21] 73.30 ± 8.26 84.95 ± 10.67 79.06 ± 15.57 1.37 ± 0.19 2.52 ± 0.16 2.17 × e−12

UCTransNet [22] 75.18 ± 5.13 85.23 ± 8.94 77.35 ± 11.29 1.20 ± 0.10 2.37 ± 0.12 1.78 × e−15

Ours 76.62 ± 4.34 87.27 ± 8.09 82.43 ± 7.77 1.17 ± 0.14 2.33 ± 0.10 —

Note: Optimal values are shown in bold.
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Table 5 shows the comparison of the results between our pro-
posed network and the classic Transformer-based segmenta-
tion models on the PROMM dataset. It can be seen that the 
Trans-Scale network shows better segmentation indicators 
than other models. Although the prostate cancer area ac-
counts for a larger proportion in the PROMM dataset, the 
effective number of slices containing the target area is very 
limited, which limits the performance of the PVT network 
and the MedT network to a certain extent. It causes the mod-
els to pay too much attention to the background region, thus 
affecting the prediction of the model. In addition, the follow-
ing information can be seen from Table 5: on the one hand, 
the proposed network achieves the ASD distance of 1.50 mm 
and the HD distance of 2.23 mm, indicating that the distance 

between the prediction and the ground truth is closer. The 
competitive performance on this dataset further reflects the 
outperforming generalization performance of our proposed 
model; on the other hand, the proposed Trans-Scale Network 
might be disturbed by the redundant background to a certain 
extent so that it fluctuates more variance, reflecting that the 
network still has room for further enhancement.

Figure  11 shows the visualization results for prostate cancer 
segmentation on the PROMM dataset. The three columns on 
the left show the renderings of MRI in the three modalities of 
T2W, ADC and DWI. It can be seen that T2W shows the clearest 
MRI image, where the prostate cancer area and the surround-
ing background are very clear, and the amount of information 

FIGURE 9    |    Comparison of the visualization results for different classic medical image segmentation models on the MSD dataset. The ground 
truth is delineated within the original image in the leftmost column.

FIGURE 10    |    Enhanced boxplot representation for five-fold cross-validation Results of the DSC Metric on the PROMM dataset. The consistency 
of the DSC distribution between different folds proves the robustness of our proposed model.
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that can be provided is also the largest. Compared with the T2W 
image, the ADC is slightly blurred. The effect of the DWI image 
is the most blurred, and only the approximate prostate cancer 
area can be seen. However, the influence of the surrounding re-
dundant background is eliminated in the DWI image to some 
extent, and the prediction of the network can be further pro-
moted. Based on this, the network adopts a three-channel input 
composed of three different modalities and assists the predic-
tion of the network by providing supplementary information of 
different modalities. From the two columns on the right, it can 
be seen that the prediction and the ground truth are very close 
in shape, reflecting the outperforming performance of the pro-
posed Trans-Scale network.

4.7   |   Segmentation Results on Kvasir-SEG Dataset

On the Kvasir-SEG polyp segmentation Dataset, TS-Net at-
tained the highest dice score of 91.42% and the minimum 
distance metrics for HD and ASD, as illustrated in Table  6, 
demonstrating its strong generalization capabilities. Despite 
considerable disparities in polyp shapes, sizes, positional dis-
tributions, and color variations across different samples, TS-
Net consistently delivers complete and precise predictions, 

as presented in Figure  12 (The red solid line represents the 
ground truth (GT), and the green solid line represents the pre-
dicted results). This reaffirms the model's ability to extract 
target features effectively, thus significantly reducing the like-
lihood of mis-segmentation.

5   |   Discussion

5.1   |   Comparison of Computational Efficiency

To assess the computational efficiency of TS-Net, we conducted 
an analysis on the MSD pancreatic cancer segmentation dataset, 
where we compared the parameter count, training time, and in-
ference time of the TS-Net network with four other state-of-the-
art methods for pancreatic cancer segmentation, as presented in 
Table 7.

On the one hand, it is evident that TS-Net has the fewest pa-
rameters compared to the other methods and has achieved the 
highest Dice score. On the other hand, TS-NET significantly re-
duced both training and inference times, showcasing a remark-
able balance between precision and efficiency. This underscores 
the superior practical performance and applicability of TS-Net.

TABLE 5    |    The performance (measured by the DSC, Precision, Recall, ASD, and HD) of prostate cancer segmentation on the PROMM dataset.

Method DSC (%) Precision (%) Recall (%) ASD (mm) HD (mm) p-value

MedT [19] 67.82 ± 15.87 69.26 ± 15.28 51.56 ± 15.31 2.94 ± 0.63 2.96 ± 0.25 1.25 × e−13

PVT [20] 58.50 ± 1.82 67.35 ± 6.59 53.73 ± 4.49 2.34 ± 0.30 2.88 ± 0.06 2.76 × e−11

TransUNet [21] 79.80 ± 1.18 84.82 ± 6.11 77.80 ± 5.00 1.69 ± 0.22 2.29 ± 0.04 5.48 × e−11

UCTransNet [22] 79.83 ± 1.09 87.32 ± 7.23 89.65 ± 4.18 1.54 ± 0.12 2.26 ± 0.04 4.69 × e−13

Ours 80.70 ± 6.40 90.53 ± 7.02 92.76 ± 7.65 1.50 ± 0.29 2.23 ± 0.16 —

Note: Optimal values are shown in bold.

FIGURE 11    |    The visualization of prediction results on the PROMM dataset.T2W, ADC, and DWI represent three different modalities in MRI 
images.
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5.2   |   Ablation Study

In order to validate the effectiveness of the fundamental mod-
ules within our proposed network, we implement ablation ex-
periments on the Trans-Scale model using the MSD dataset. As 
indicated in Table 8, we individually removed each of the criti-
cal modules designed for the network and assessed the resulting 
network's performance based on the DSC metric.

Table 8 shows the results of the ablation experiment on the MSD 
dataset. The last row is the Trans-Scale network proposed. The 
data from the first row reflects that the model DSC index drops by 
1.31% without SIA module, indicating the designed SIA module 

can effectively use different scale features to compensate for over-
looked information by the network. The proposed MCM module 
has a 2.25% impact on the network. It demonstrates MCM mod-
ule using convolution modulation can fully combine the advan-
tages of CNN and Transformer to enhance the ability of extracting 
features. The Edge loss function based on wavelet transform has 
the greatest impact on the network. The network performance 
will be reduced by 3.43% after removing this module, indicating 
that in the pancreatic cancer segmentation task, the supervision 
of the target edge with the help of the loss function can effec-
tively enhance the high-frequency texture details. As shown in 
Figure 13, where the red line represents the ground truth and the 
green line represents the predicted results, the final predictions in 

TABLE 6    |    The performance (measured by the DSC, Precision, Recall, ASD, and HD) of polyp segmentation on the Kvasir-SEG dataset.

Method DSC(%) Precision(%) Recall(%) ASD(mm) HD(mm) p-value

MedT [19] 88.24 ± 6.23 89.93 ± 5.88 89.79 ± 5.76 6.34 ± 2.31 5.57 ± 2.15 6.23 × e−14

PVT [20] 87.67 ± 2.03 89.50 ± 1.93 89.63 ± 1.82 7.11 ± 1.94 6.50 ± 1.76 3.11 × e−15

TransUNet [21] 89.83 ± 1.82 91.33 ± 1.66 91.26 ± 1.73 5.02 ± 1.69 4.83 ± 1.31 4.45 × e−15

UCTransNet [22] 89.95 ± 1.36 91.15 ± 1.58 92.78 ± 1.62 3.79 ± 1.69 4.67 ± 1.25 1.04 × e−14

Ours 91.42 ± 0.55 91.36 ± 0.43 93.64 ± 0.46 2.87 ± 0.12 3.05 ± 0.14 —

Note: Optimal values are shown in bold.

FIGURE 12    |    The visualization of prediction results on the Kvasir-SEG polyp segmentation dataset. The red solid line represents the ground 
truth (GT), and the green solid line represents the predicted results. Polyp regions with different morphologies can be accurately segmented by our 
proposed model.

TABLE 7    |    The comparison of computational efficiency on the public MSD dataset.

Method Params (M) Training time (h) Inference time (min) DSC (%)

Qiu et al. [44] 104.69 7–8 8–9 59.37 ± 5.78

Ju et al. [40] 45.17 5–6 7–8 63.32 ± 6.37

Chen et al. [33] 98.45 7–8 8–9 66.65 ± 15.21

Li et al. [43] 86.93 6–7 7–8 71.06 ± 6.85

Ours 32.18 4–5 3–4 76.62 ± 4.34

Note: Optimal values are shown in bold.
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the last column exhibit contours closer to the ground truth com-
pared to those in the third column without utilizing the edge loss. 
Moreover, adding this loss function during training has an almost 

negligible impact on the training time, resulting in minimal com-
putational overhead.

5.3   |   Limitations and Future Work

Despite the Trans-Scale Network demonstrating remarkable per-
formance for various medical image segmentation tasks, there is 
still room for improvement. Specifically, the fine-segmentation 
stage heavily relies on the fast localization from the coarse stage. 
However, we observe that a small number of the ROIs (regions 
of interest) obtained from the coarse stage fail to encompass all 
target regions, thereby limiting the performance enhancement 
of these slices during the fine segmentation stage. As shown in 
Figure  14, the red solid line and green solid line represent the 
ground truth and the prediction, respectively. The segmentation 
network's attention is focused on the main target regions, lead-
ing to the omission of some topologically disconnected small tar-
get areas.

TABLE 8    |    The ablation study of the Trans-Scale Network on the 
MSD dataset.

SIA MCM
Dice 
loss

BCE 
loss

Edge 
loss DSC(%)

— √ √ √ √ 75.31

√ — √ √ √ 74.37

√ √ √ √ — 73.19

√ √ √ — — 72.98

√ √ — √ — 72.02

√ √ √ √ √ 76.62

Note: “—” indicates the exclusion of a module. The Optimal values is shown in bold.

FIGURE 13    |    The visualization of ablation experiments on the MSD dataset. The red solid line represents the ground truth (GT), and the green 
solid line represents the predicted results. W/O means without a module.

FIGURE 14    |    The visualization of failure cases on the NIH pancreas segmentation dataset. The red solid line represents the ground truth (GT), 
and the green solid line represents the predicted results. The partially missed small target regions are highlighted with yellow boxes.
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Therefore, we plan to explore how to extract more accurate ROIs 
from the coarse stage, such as designing an attention mecha-
nism for small target regions or integrating coarse segmentation 
results into the fine segmentation stage to achieve end-to-end 
learning and iterative optimization in the future.

6   |   Conclusion

This paper proposes a novel medical image segmentation net-
work, Trans-Scale. Specifically, a SIA module, a MCM module, 
and an edge loss function based on wavelet decomposition are 
proposed. Among them, the SIA module compensates for the 
information details lost by the network, effectively facilitating 
the interaction between high-level semantic features and low-
level spatial features. The proposed MCM module simplifies 
the self-attention mechanism utilizing convolution modula-
tion that incorporates multi-scale large-kernel convolution into 
depth-separable convolution, enhancing the feature interaction 
ability of the network. For the problems of blurred edges and 
low contrast in medical images, the edge loss function based on 
wavelet decomposition is used to effectively supervise the high-
frequency texture information and further improve the segmen-
tation performance of the network.

Our method is evaluated on four different medical image data-
sets, and the experimental results demonstrate that the pro-
posed Trans-Scale network achieves superior segmentation 
performance compared with other state-of-the-art methods. We 
also make a comparison with the classic medical image segmen-
tation networks, which further proves the outperforming seg-
mentation performance of the proposed network. Finally, the 
visualization of segmentation results proves the practicability of 
the network.
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