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A B S T R A C T

Stroke segmentation has great significance for clinical diagnosis and timely treatment. Medical images of
strokes often come in the form of multiple modalities. But most existing methods simply stack these modalities
as input, disregarding the connections and other clinical prior knowledge associated with each modality. In
this paper, we present MDANet, a multimodal difference aware network for stroke segmentation based on
multimodal input. The proposed network mainly consists of a difference aware module and a graph convolution
fusion block. In the difference aware module, a parameter-shared encoder is adopted to extract features from
different modality groups and generate difference feature maps by subtracting one group from another to
enhance the perception of potential lesion areas. We further design a similarity loss to improve this ability.
The graph convolution fusion block is developed to aggregate features from different modalities with a channel
embedding strategy to model the features globally and a space embedding strategy for local modeling. The
MDANet is trained and evaluated on the Ischemic Stroke Lesion Segmentation (ISLES) 2018 and 2022 datasets.
Our approach achieves a dice score of 58.34 and 70.44, surpassing the performance of other advanced existing
methods.

1. Introduction

Medical image segmentation is an essential topic for human society
and health, which helps doctors make a diagnosis and carry out corre-
sponding treatment more efficiently. Stroke segmentation is one of the
most vital tasks in the field. Stroke has already been the second most
common cause of death and the third most common cause of disability
worldwide [1]. Computed Tomography Perfusion imaging (CTP) and
Magnetic Resonance Imaging (MRI) are the usual medical imaging
technique for the diagnosis of brain stroke in clinical practices, both of
them can provided multiple imaging modalities. CTP maps include four
modalities, namely cerebral blood flow (CBF), cerebral blood volume
(CBV), mean transit time (MTT), Time To Peak of the Residue Function
(TMax), as shown in Fig. 1. These perfusion maps evaluate brain health
from blood volume and circulation efficiency. MRI evaluates the health
status of the brain by establishing diffusion weighted map (DWI) and
apparent diffusion coefficient (ADC) through the diffusion movement of
water molecules in the brain [2], as shown in Fig. 2 These multimodal
images can often provide reliable basis for clinical diagnosis.
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Since the advent of deep learning [3], neural networks based on
encoder–decoder architecture have achieved state-of-the-art perfor-
mance in various medical image segmentation tasks [4–8]. However,
most existing methods are designed only considering the scenario of
single modality input. When facing multimodal inputs, most existing
methods simply stack images of different modalities as input, or use
multiple encoders to extract features from each modality and design
another sub-network to fuse these features [9–11]. These methods
rely on the network itself to model the relationship between different
modalities, ignoring the characteristics of multimodal images them-
selves and their guiding role in clinical diagnosis, which probably
lead to the model failing to make full use of the correlation between
modalities or even introducing some unnecessary noise.

Through the observation of CT perfusion images Fig. 1, the pixel
intensity of the lesion area is lower than the surrounding normal tissue
in CBF and CBV. But higher in MTT and TMax. The pixel intensity
mismatch between modalities can also be observed in multimodal
MRI images, as shown in Fig. 2. This observation provides a valuable
reference for the location of the lesion, by exploring the regions with
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Fig. 1. An example of multi-modal perfusion maps of brain stroke segmentation. (a) The CBF modality (b) The CBV modality (c) The MTT modality (b) The TMax modality (b)
The Ground Truth.

Fig. 2. An example of multi-modal MRI brain slice.

mismatched features between modalities, regions with possible lesions
can be better located and segmented. Based on the above analysis, we
propose MDANet, a multimodal difference aware segmentation network
for brain stroke segmentation. The main contributions of this study are
as follows:

(1) We propose a difference aware module. Our method adopts a
parameter-sharing encoder based on multi-scale convolution to group
and encode features from multimodal inputs. We subtract features of
one modality group from another to extract difference feature maps
and design a difference aware skip connection (DASC) to enhance sen-
sitivity toward lesions by fusing the difference feature map in different
scales.

(2) A graph convolution fusion block (GCFB) is designed to fuse the
features from various modalities and improve the overall representation
of the network. Specifically, we develop two distinct graph embedding
strategies. GCFB(channel) builds the graph along the channel to infer
the global feature and GCFB(space) generates the graph by partitioning
the feature map to aggregate local features.

(3) We design a mask similarity loss function to align features
in non-lesion areas of different modalities, which mitigates the in-
terference generated by feature map subtraction. We evaluate the
performance of the proposed method on the ISLES2018 and ISLES2022
datasets. The results demonstrate its promising capabilities and outper-
form other existing advanced methods.

2. Related works

2.1. Medical image segmentation

Image segmentation is one of the main tasks in the computer vision
field. In the past few years, deep learning based on convolutional
neural networks (CNN) has rapidly become the mainstream of related
research. Fully convolutional network (FCN) [12] was the first end-to-
end pixel-level segmentation network based on deep learning. Inspired
by its encoder–decoder structure, U-Net [13] proposed a skip con-
nection mechanism to combine the features of encoder and decoder
and firstly introduced deep learning into medical image segmentation.
Attention U-Net [14] added an attention gate based on U-Net to better
fuse features from the encoder and decoder. U-Net++ [15] designed
a series of nested, dense skip pathways to reduce the semantic gap

between encoder and decoder. U-Net 3+ [16] concatenated feature
maps from different layers and created a full-scale connection to in-
corporate low-level details with high-level semantics. ResU-Net [17]
replaced convolution blocks in U-Net with modified residual blocks,
using multiple parallel atrous convolutions to extract features from
various receptive fields. MSNet [18] used a multi-scale subtraction
connection to replace the skip connection in UNet to reduce redundant
information generated during the skip connection between the encoder
and decoder. Furthermore, M2SNet [19] refined the network by equip-
ping convolution kernel of various receptive fields at each subtraction
block. With the presentation of ViT [20] in 2020, Modules based on
the self-attention mechanism and transformer architecture [21] are also
continuously introduced into the medical image segmentation network.
TransU-Net [6] combined advantages of CNN and transformer, using
CNN as an encoder to preliminary extract the local features of the input
image, then encoding the global features through a series of transformer
encoders. To maximize the global modeling potential of the transformer
architecture. MedT [7] used shallow CNN and transformer to extract
features from local and global perspectives. SwinU-Net [22] replaced
all CNN blocks in traditional U-Net with shifted windows transformer
blocks. These segmentation methods based on deep learning have
achieved good results.

2.2. Multi-modal brain lesion segmentation

In clinical diagnosis, multimodal images are the most important
diagnostic tools. Many methods for brain disease segmentation based
on multimodal inputs have been proposed. Zhou et al. [4] combined
2D convolution and 3D convolution to segment stroke by dimensional
fusion. Xu et al. [23] proposed a receptive field-based attention mech-
anism to improve stroke segmentation performance by controlling the
size of the receptive field. Clèrigues et al. [24] enhanced the features
of multimodal images based on the symmetry of brain hemispheres.
Liu et al. [25] used transformer blocks to enhance the combination
of context information. de Vries et al. [26] noted asymmetry between
infarcted and healthy hemispheres and proposed a spatiotemporal at-
tention mechanism to encode brain features and perceive differences
between hemispheres.

However, these methods simply stack multimodal images as input
but neglect potential correlations and complementarities between dif-
ferent modalities. Other works begin to research multimodal fusion
methods. Aygün et al. [27] used multimodal MRI brain slices to study
the effects of fusion at early, middle, and late stages on the results
of brain tumor segmentation. Li et al. [28] observed the difference
between the modalities, divided multimodal brain MRI into two groups,
using two encoders to capture the features of different modality groups,
and fusing them through self-attention and cross-attention modules.
Zhang et al. [11] proposed mmFormer, which encodes each modality
of brain MRI using different transformer encoders and implements
another transformer module to fuse the features. Zhu et al. [29] and
Marinov et al. [30] assigned different sub-tasks to different modalities
of medical images to strengthen the network’s learning ability from
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Fig. 3. The main frame of the MDANet. (a) Multi-Scale Convolution (MSC). (b) Graph Convolution Fusion Block (GCFB). (c) Difference Aware Skip Connection.

each modality. For brain CT perfusion maps, Chen et al. [9] used
different encoders for each modal input, concatenated and fused the
multimodal features in each layer of skip connections. Shi et al. [31]
separated the four modalities into blood parameter maps and time
parameter maps based on the imaging principle of the perfusion maps,
and fused multimodal features through a well-designed group attention
block. Kumar et al. [32] used multimodal images to strip skull areas in
the original CT image and proposed a patch-based asymmetric U-Net
framework to deal with the class imbalance in stroke segmentation.

2.3. Graph based modeling

Graph convolution was introduced by Bruna et al. [33] for the first
time. Graph Convolutional Network (GCN) is mainly aimed at relation
reasoning based on the nodes and edges in the classic graph data
structure. Chen et al. [34] proposed a graph-based global reasoning
module for image processing tasks, which maps image features from
coordinate space to interaction space and processes global information
through GCN. Based on the idea of converting feature maps into graphs,
Lu et al. [35] applied graph convolutional networks to image semantic
segmentation for the first time. Li et al. [36] introduced the graph
reasoning into the original images of various scales to realize a light-
weight segmentation based on GCN. Some studies [37,38] used graph
convolution to establish the relationship between different images and
improve the robustness of the network for segmenting targets of dif-
ferent sizes and textures. In the medical image segmentation tasks,
Zhu et al. [29] implemented GCN to fuse semantic and edge features
encoded from different modalities. These methods demonstrated the
effectiveness of the graph reasoning modules.

3. Method

3.1. Overview

The main architecture of the proposed MDANet is shown in Fig. 3.
Our network consists of a difference aware network with a newly
designed skip connection (DASC) and a two-stage graph convolution
fusion block (GCFB) for the interaction of multimodal features. The
input multimodal medical images are categorized into two groups
based on the properties of the lesions. Specifically, the grouping criteria
are determined by whether the intensity of the lesion area is higher or
lower than the surrounding pixels in each modality. The DASC at each
layer extracts difference feature maps between features of different
modality groups and refines them by interacting with difference feature
maps from deeper semantic features. GCFB serves as the bottleneck
between the encoder and decoder to fuse features and model corre-
lations between modalities based on graph convolution. GCFB consists
of two sub-blocks: GCFB(channel) and GCFB(space), which enables the
module to encode the feature from global and local perspectives. The
final segmentation result is output by the decoder.

3.2. Difference aware module

To fully leverage complementary information of multimodal inputs,
we adopt a dual-path encoder. This architecture enables the network
to better encode the identical features from each modality. The input
multimodal images are divided into two groups based on their visual
characters. Considering the differing gray distributions in different
modal images may cause the network to fail to decouple the multimodal
feature input. We first encode each group of inputs with independent
parameters, and supervise the background area’s features of different
modal images as similar as possible. More details of this supervision
will be described in Section 3.4. After the initial encoding stage, the



Biomedical Signal Processing and Control 95 (2024) 106383

4

K. Zhang et al.

Fig. 4. The architecture of the Difference Aware Skip Connection (DASC).

features of different modalities are mapped to the same semantic
space through a parameter-sharing encoder for subsequent interactive
processing.

Lesions in medical images are diverse in shape and size. To better
deal with this situation, we introduce a multi-scale convolution (MSC)
encoder block to replace the original block in the U-Net encoder. The
structure of MSC is shown in Fig. 3(a), We use different numbers of
3 ù 3 convolution layers to encode features under different receptive
fields, and finally concatenate them to obtain the multi-scale feature.
The newly designed block can capture features of different reception
fields with fewer parameters, which enables the network to recognize
the potential lesion regions more effectively.

For the skip connection between the encoder and decoder, we
propose Difference aware skip connection (DASC). As shown in Fig. 4,
compared with the standard encoder–decoder architecture that directly
passes through skip connections. The transferred features between the
encoder and decoder are the difference feature maps F

D
based on the

mathematical difference between the two modality groups as:

F
D
= F

m1 * F
m2 (1)

where F
m1, Fm2 refers to the features of different modality groups. The

difference feature map F
D
enhances the mismatch features between

modalities and weakens the features of irrelevant areas. To further
improve the module’s awareness of potential lesion areas, we refine
the difference feature map through the guidance of deeper semantic
features. In DASC, we embed difference feature maps from the encoder
and the decoder into an interaction space. Then we fuse the features
and generate an attention map, the process can be expressed as:

W = �(✓1(✓2(FD
) + ✓3(Fde

))) (2)

where F
de
refers to the difference feature map from the decoder. �()

represents the sigmoid operator and ✓
i
() represents point-wise convolu-

tion operator. We use the weight map to update the difference features
and obtain the refined feature through a residual connection with the
original difference features. The whole process can be described as:

ÇF
D
= F

D
+W ù F

D
(3)

3.3. Graph convolution fusion block

Global information reasoning plays a crucial role in medical image
segmentation. The transformer architecture is used widely in various
computer vision tasks due to its global modeling capabilities. However,
this architecture does not always perform well on many small datasets
due to its lack of inductive bias, which always happens in medical
image tasks [5,19]. In recent years, the combination of GCN and
computer vision has been demonstrated to have good feasibility in

terms of global reasoning [29,34]. In this work, we design GCFB to
model and fuse features based on graph convolution.

In GCFB, the feature map F
i
À R

CùHùW from coordinate space
will be embedded into a graph G

i
À R

NùE in the interact space at
first, where i denote to the modal groups, N represents the number
of nodes in the graph and E represents the embedding dimension for
each node. By concatenating the graphs generated by the feature map
of each modality group, we can obtain a larger graph G

concat
with nodes

from all modalities in an interaction space.
When converting 3D feature maps into 2D graphs, taking inspi-

ration from existing methods that incorporate attention from both
channel and space to enhance feature encoding ability [39,40]. We
design two different embedding strategies: channel embedding and
space embedding.

Channel embedding: As shown in Fig. 5. Given the feature map
F
i
À R

CùHùW , we utilize two learnable projection layers to reduce
the dimension to obtain F

✓
À R

NùHùW and F
'

À R
EùHùW , where

N is the number of nodes and E is the feature length of each node.
Subsequently, we flatten the feature maps and do matrix multiplication
of F

✓
and F

'
to get the graph G

i
À R

NùE . The process can be expressed
as:

G
i
= ✓(F

i
)‰ ('(F

i
))T (4)

where ✓(�), '(�) denotes the learnable projection layer, the feature
is obtained by fusing features in the coordinate space from feature
maps through dense sampling, which has a robust representation of
global information. After updating the graph and getting graph ÇG, we
can recover the feature from interaction space to coordinate space
using:

ÇF
i
= ÇG

i
ù F

✓
(5)

which has been proven to be effective in [34].
Space embedding: As shown in Fig. 6. Given the feature map F

i
À

R
NùHùW , referring to the tokenization operation in ViT [20], we divide

it into N patches, where N = HW refers to the number of patches,
each patch can be considered as a node in a graph. We also add a
learnable tensor as position embedding to strengthen local information
for each node. For space embedding, features can be converted from
the interaction space back to the coordinate space by rearranging the
patches.

By combining channel embedding and space embedding, the net-
work can better represent information from global and local contexts.
We can update and aggregate features by learning the internal features
of each node and the relationships with other nodes based on graph
convolution. The formula of graph convolution can be expressed as:

ÇG = ((I * A)G
concat

)W (6)
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Fig. 5. GCFB with channel embedding.

Fig. 6. GCFB with space embedding.

where I represents the identity matrix, A À R
2Nù2N represents the

adjacency matrix of this graph and W À R
EùE represents the weight

matrix, both A and W are learnable parameters. The adjacency matrix
A serves the purpose of aggregating features of different nodes along
the node dimension. It learns the edge weights, or relationships in
other words between each node. By adjusting weights in the adjacency
matrix, the network can assign importance to each edge, aggregating
the features of different nodes more effectively. The weight matrix W

aggregates the features of each node along the feature dimension of the
graph and further learns the deep semantic feature of each node. The
graph convolution is implemented by two 1D convolutions as shown in
Fig. 7. Or expressed as:

GCN(G) = ReLU (Conv((G * Conv(G))T )T ) (7)

where G = G
concat

denotes the input graph.

Fig. 7. Structure of graph convolution network (GCN).

After applying two GCFB sub-modules, we subtract the interacted
multimodal feature maps to get the difference feature map as the input
for the decoder.
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3.4. Loss function

We hope the network can focus on the differences between multi-
modal inputs, but the overall gray distribution of different modalities
may cause interference during the direct subtraction process. To miti-
gate this interference, we design a masked similarity loss to supervise
the features before they enter the parameter-sharing encoder. Specifi-
cally, for the feature maps output from the initial independent encode
layer, we mask the lesion area in the original brain slice. The feature
map is transformed into a vector through global average pooling.
By supervising the cosine similarity between the processed vectors,
features of non-lesion regions of different modalities are forced to close
to each other. The cosine similarity loss can be expressed as:

L
similarity

= 1 * A � B
ÒAÒ � ÒBÒ (8)

where A and B represent the feature vectors of different modalities.
This loss will be used as part of the overall loss of the network and
provides stability and convenience during training. The overall loss of
the network can be expressed as:

L = L
segment

+ �L
similarity

(9)

where � is a hyperparameters that control the trade-off between two
losses. The segment loss function is a combination of traditional cross
entropy loss function and dice loss function:

L
segment

= L
dice

+ L
ce

(10)

L
dice

= 1 * 2X „ Y 
X + Y  (11)

L
ce

= *
N…
i=1

y
i log xi (12)

where X, x represents the predict results and Y , y represents the ground
truth.

4. Experiment results and analysis

4.1. Datasets

We evaluate MDANet on Ischemic Stroke Lesion Segmentation
(ISLES) 2018 dataset [41,42] and 2022 dataset [43].

ISLES2018: ISLES2018: This dataset includes 94 cases of CT per-
fusion maps from 63 acute stroke patients, each case consists of four
modalities, namely CBF, CBV, MTT, and TMax.

ISLES2022: This dataset consists of 250 multimodal MRI scans.
Each scan includes diffusion-weighted imaging (DWI), apparent diffu-
sion coefficient (ADC) and fluid attenuated inversion recovery (FLAIR)
sequences. The DWI and ADC images are aligned, but FLAIR images
require additional registration processing. Therefore, we only use DWI
and ADC as input in this paper.

4.2. Implementation details

We use 5-fold cross-validation to evaluate the effectiveness of all
models. The network is implemented on NVIDIA GeForce RTX 2080Ti
GPU using PyTorch [44] framework. For the ISLES2018 dataset, we
allocated CBF and CBV into one group (the pixel intensity of the
lesion area is lower than the surrounding value). MTT and TMax (the
pixel intensity of the lesion area is higher than the surrounding value)
to another. For the ISLES2022 dataset, we use the DWI and ADC
images as two group inputs, respectively. We also implement data
augmentation operations for both datasets, including random flipping,
random rotation (*90˝Ì90˝), and random scaling (0.8Ì1.2) to improve
the robustness of the model.

All models are trained with a batch size of 16. The Adam optimizer
is selected with an initial learning rate of 10*3, �1 of 0.9 and �2 of

Fig. 8. Boxplot of 5-fold cross-validation dice score.

0.999. We evaluate the trained networks using the Dice Score (DSC),
precision and recall rate. These indicators can be calculated as follows:

DSC = 2TP
2TP + FP + FN

(13)

Precision = TP

TP + FP
(14)

Recall = TP

TP + FN
(15)

F1 Score = Precision ù Recall ù 2
Precision + Recall

(16)

where TP represents the prediction of true positives, FP represents the
prediction of false positives and FN represents the prediction of false
negatives on a single pixel.

4.3. Quantitative results

Tables 1 and 2 show the comparison experiment of MDANet with
other classic and effective segment methods on ISLES2018 and 2022
datasets, including classical convolution-based method of U-Net [13],
Attention U-Net [14], U-Net++ [15], MSNet [18] and advanced
transformer-based methods of TransUNet [6], SwinUNet [22]. All ex-
perimental results are based on five-fold cross-validation and per-
formed under the same configuration and computer environment.
For the ISLES2018 datasets, we additionally compare several state-of-
the-art stroke segmentation methods based on CT perfusion images,
including OctopusNet [9], the method proposed by Abulnaga [45],
Pool-UNet [25] and Perf-UNet [26].

The experimental result of MDANet is presented at the bottom of the
tables, and the best result is highlighted in bold. We can observe that
MDANet outperforms other advanced methods on both datasets. Specif-
ically, MDANet achieved a Dice Score of 58.34% on ISLES2018, which
was 3.90% higher than the suboptimal result in the same experimental
environment obtained by U-Net++ [15], and was 0.42% higher than
the suboptimal result of all compared methods. MDANet also achieved
70.44% on ISLES2022, which is 0.87% higher than the suboptimal
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Table 1
Comparison of different models on the ISLES2018 dataset. Scores are obtained by 5-fold cross-validation. The best results are in boldface.
Method DSC (%) Precision (%) Recall (%) F1 Score Param (M) FLOPs (G)

U-Net [13] 53.34 ± 0.85 57.09 ± 3.99 56.90 ± 3.40 0.5680 30.0 10.81
Attention U-Net [14] 54.37 ± 2.36 54.61 ± 4.32 62.41 ± 2.23 0.5817 29.9 9.92
U-Net++ [15] 55.04 ± 2.61 55.96 ± 5.03 62.47 ± 3.06 0.5886 35.0 26.69
MSNet [18] 54.99 ± 2.72 55.23 ± 4.43 63.36 ± 1.96 0.5891 20.3 6.96
TransUNet [6] 52.34 ± 3.73 53.42 ± 6.64 59.05 ± 5.11 0.5571 175.3 19.19
SwinUnet [22] 48.50 ± 3.85 51.42 ± 5.01 55.25 ± 8.27 0.5275 106.0 6.14
OctopusNet [9] 57.92 – – – – –
Abulnaga et.al [45] 54.00 – – – – –
Pool-UNet [25] 56.04 67.82 56.54 0.6167 – –
Perf-UNet [26] 56.40 56.50 64.40 0.6019 – –

MDANet 58.34 ± 2.11 60.22 ± 3.69 64.03 ± 2.89 0.6195 25.3 11.22

Table 2
Comparison of different models on the ISLES2022 dataset. Scores are obtained by 5-fold cross-validation. The best results are in boldface.
Method DSC (%) Precision (%) Recall (%) F1 Score Param FLOPs (G)

U-Net [13] 63.93 ± 3.26 74.55 ± 1.98 62.11 ± 5.07 0.6764 30.0 2.69
Attention U-Net [14] 68.20 ± 0.86 72.95 ± 2.47 70.65 ± 2.01 0.7173 29.9 2.47
U-Net++ [15] 69.57 ± 1.24 74.94 ± 1.19 70.91 ± 1.53 0.7286 35.0 6.66
MSNet [18] 68.66 ± 1.30 74.59 ± 2.65 69.42 ± 2.69 0.7184 20.3 1.73
TransUNet [6] 69.75 ± 1.23 75.03 ± 2.11 69.80 ± 1.90 0.7228 175.3 4.61
Swin-Unet [22] 55.08 ± 3.02 56.36 ± 4.00 65.40 ± 3.69 0.6039 105.4 6.10

MDANet 70.44 ± 0.97 75.30 ± 2.71 72.22 ± 1.63 0.7368 25.3 3.57

result of TransUNet [6]. Fig. 8 compares the scores of different methods
on the dice coefficient under cross-validation more intuitively through
the box plot.

In terms of precision and recall, MDANet achieves the highest scores
of 75.30% and 72.22% on the ISLES2022 datasets. It outperforms
the second-ranked method by 0.27% and 1.31% respectively. On the
ISLES2018 datasets, although MDANet does not achieve the optimal
precision and recall rate, Pool-Unet [25] achieved a precision rate of
67.82%, but a recall rate of 56.54%. And Perf-UNet [26] achieved a
recall rate of 64.40%, but an accuracy rate of 56.50%. These results
show a trade-off of these two indicators due to the calculation methods.
In contrast, MDANet achieved 60.22% and 64.03% in precision and
recall rates. It is a relatively balanced and high-level result, which
can also be concluded by comparing the F1 scores. According to the
quantitative results, our proposed MDANet improves the performance
of stroke segmentation with a small number of parameters and a tiny
cost of computational complexity.

4.4. Qualitative results

Figs. 9 and 10 shows some example of segmentation results from
different methods on ISLES2018 and ISLES2022. The first column
shows one of the representative modalities in the multi-modal inputs,
and the second column shows the ground truth of the corresponding
inputs, the last column is the segmentation result of the MDANet.

To enhance the visualization of segmentation results, we employ
different colors to represent the predictions of true positive (TP ), false
positive (FP ), and false negative (FN). For the vast majority of cases,
relying on the feature representation capabilities of deep learning,
most methods can effectively segment lesions. However, when paying
more attention to the details, it can be observed that the proposed
MDANet has better performance. Notably, MDANet demonstrates better
performance by significantly reducing the number of false negative pre-
dictions (yellow colored region). This improvement is also reflected in
the higher recall rate. We believe that this point is of great significance
in clinical diagnosis, because the missed diagnosis of lesion areas can
lead to patients missing the optimal treatment window and causing
more potential harm to their health.

4.5. Ablation study

4.5.1. Components ablation
To further verify the effectiveness of the main components in the

MDANet, an ablation study is conducted on the ISELS2018 datasets.
U-Net serves as the baseline in this experiment. By adding or replacing
proposed components sequentially to the original network, we mainly
test the following components:

DASC: Replacing the single encoder with a dual encoder that shares
parameters except for the first stage, and using difference aware skip
connection (DASC) to replace the original concatenate-based skip con-
nection.

MSC: Replacing the normal convolution layer with the proposed
multi-scale convolution layer.

GCFB: Introducing the graph convolution fusion block into the
network as a neck between encoder and decoder.

SL: Adding a similarity loss function as a soft supervision for feature
aligning between different modalities.

Table 3 presents an overview of the objective performance of dif-
ferent components and their contributions to the final segmentation
performance of the network. Each module brings improvement to the
segmentation performance. Specifically, the DASC module has the most
noticeable effect on improving the dice score. The GCFB module con-
tributes the most to enhancing the precision rate. This is likely because
GCFB enables the network to have a better global modeling ability
through global reasoning based on graph convolution. By dividing
the feature map into different nodes along the channel and space,
GCFB allows the model to perform global reasoning and build global
relationships between local features, thus improving the network’s
global modeling ability. Furthermore, both DASC and MSC contribute
significantly to increasing the recall rate. DASC can effectively capture
mismatches between different modalities and aid in the determination
of lesion regions. On the other hand, MSC provides a broader recep-
tive field for the network. These contributions further help MDANet
concentrate on lesion areas and suppress false negative predictions.

4.5.2. Skip connection ablation
In MDANet, we use feature subtraction as the pipeline for multi-

modal difference awareness and utilizing the different maps through
skip connection.

To further investigate the effectiveness of the subtraction operation
in the skip connection, a comparative experiment is conducted to
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Fig. 9. Qualitative results of stroke segmentation on ISLES2018 datasets, with the corresponding true positive predicts (green), false positive predicts (red) and false negative
predicts (yellow).

Fig. 10. Qualitative results of stroke segmentation on ISLES2022 datasets, with the corresponding true positive predicts (green), false positive predicts (red) and false negative
predicts (yellow).

Table 3
Ablation study on the ISLES2018 dataset. Scores are obtained by 5-fold cross-validation. The best results
are in boldface.
DASC MSC GCFB SL DSC (%) Precision (%) Recall (%) F1 score

53.34 ± 0.85 57.09 ± 3.99 56.90 ± 3.40 0.5680
Ç 55.31 ± 3.36 57.53 ± 4.81 59.89 ± 3.64 0.5869
Ç Ç 56.64 ± 1.99 57.39 ± 2.83 62.57 ± 5.40 0.5987
Ç Ç Ç 57.50 ± 2.32 60.19 ± 4.77 59.54 ± 2.96 0.5986
Ç Ç Ç Ç 58.34 ± 2.11 60.22 ± 3.69 64.03 ± 2.89 0.6195
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Table 4
Comparison of different skip connection strategies on the ISLES2018 dataset. Scores
are obtained by 5-fold cross-validation. The best results are in boldface.
Method DSC (%) Precision (%) Recall (%)

Add 56.22 ± 1.27 58.32 ± 2.71 60.06 ± 0.50
Concat 57.72 ± 2.90 60.01 ± 2.27 59.71 ± 5.87
Subtract 58.34 ± 2.11 60.22 ± 3.69 64.03 ± 2.89

Table 5
Comparison of global fusion and modeling strategies on the ISLES2018 dataset. Scores
are obtained by 5-fold cross-validation. The best results are in boldface.
Method DSC (%) Param (M) FLOPs(G)

Baseline 56.32 ± 1.87 22.5 10.88
Non-local 56.98 ± 1.60 27.6 11.22
Transformer 57.14 ± 1.48 61.7 15.83
ours 58.34 ± 2.11 25.3 11.22

compare different fusion strategies. The result is shown in Table 4,
in which the Subtract indicates the operation implemented in the
proposed MDANet. Add means add feature maps of different modalities.
Concat means concatenating feature maps of various modalities and
applying another 1 ù 1 convolution to adjust the number of channels.
When using the addition strategy, there is a sharp drop in the model’s
performance. One possible explanation for this is that due to the
opposite values in pixels of the lesion area across different modalities,
the activation value of the lesion area is weakened after addition.
On the other hand, the concatenation strategy has a relatively small
impact on the model’s performance. However, it requires additional
computing resources to reduce the dimension of the feature map.
Therefore, the subtraction operation in the skip connection is beneficial
for differences awareness between multimodal features. It improves the
segmentation performance by effectively capturing and emphasizing
the discrepancies in the lesion area.

4.5.3. Global modeling ablation
The graph convolution fusion block (GCFB) in MDANet plays a

crucial role in fusing multi-modal features and global modeling. The
encoding of global features is vital for medical image segmentation.
Apart from the global reasoning based on graph convolution employed
in MDANet. the transformer architecture [20] and non-local block [46]
also can model the global features of images.

In this section, we conduct a comparison of the impact of different
advanced global modeling methods on multi-modal image fusion and
the final segmentation performance of our model. Since we imple-
mented two layers of GCFB(channel) and GCFB(space) in the proposed
method, we keep the same number of layers for the non-local and
transformer blocks. In the first layer, feature maps of different modality
groups perform self-attention operations. In this process, the query,
key and value vectors are derived from the feature maps themselves.
In the second layer, key–value pair vectors and query vectors are
obtained from different modal groups, and the interaction between
modalities is achieved through cross-attention. Finally, we subtract
the updated features to acquire the difference feature map as module
output. The result of different global modeling methods is shown in
Table 5. Our graph convolution fusion block achieves the best perfor-
mance in the comparative experiments. Furthermore, compared with
the transformer-based global fusion method, the graph convolution-
based method has fewer parameters, making it more efficient in terms
of computational resources and memory requirements.

4.6. Difference aware analysis

To better illustrate the effect of feature map subtraction in DASC, we
visualize the attention maps of feature output from DASC in the third
layer of MDANet. We compare these attention maps with the output
from the standard attention gate. The result is shown in Fig. 11.

Fig. 11. Examples of the attention maps in baseline and MDANet on ISLES2018 dataset.

Table 6
Experimental results of different weight � on ISLES2018 dataset.
� DSC (%) Precision (%) Recall (%) F1 Score

0 57.50 ± 2.32 60.19 ± 4.77 59.54 ± 2.96 0.5986
0.25 58.19 ± 2.38 61.67 ± 4.80 61.16 ± 2.88 0.6142
0.5 58.11 ± 1.87 61.31 ± 2.42 60.80 ± 3.54 0.6095
0.75 58.25 ± 2.21 61.54 ± 3.96 63.20 ± 3.36 0.6236
1 58.34 ± 2.11 60.22 ± 3.69 64.03 ± 2.89 0.6195

The feature maps in the U-Net model without any attention modules
are highly relevant to the pixel values in the input image. Consequently,
regions with high pixel values in the original image tend to be pre-
served in the features. However, some of these features have a low
correlation with target areas and introduce noise to the deep semantic
through direct skip connection.

Attention U-Net utilizes the attention gate to replace the direct con-
catenation in the skip connection, which enables the network to locate
the possible lesion area by reducing the semantic gap between the
encoder and decoder. However, Attention U-Net still has deficiencies
in accuracy and concentration that suggest the network’s attention is
not optimal enough.

By introducing the difference aware skip connection (DASC), it is
evident that the network can effectively focus more attention on the
lesion area. Shows that MDANet can indeed locate the lesion through
the difference between various modalities (shown in the 5th column,
Fig. 11). However, the process of feature map subtraction can introduce
other noise due to variations in pixel’s mean and variance across
different modal images. Although most of the noise can be suppressed
through subsequent attention operations, there may still be residual
noise present, which can be manifested as high signals in the non-lesion
areas.

The proposed similarity loss further mitigates the impact of residual
noise by encouraging the network to align features in the non-lesion
areas between modalities and better highlight the lesion area that really
needs to be detected (shown in the 6th column, Fig. 11). Cases in
ISLES2022 dataset (Fig. 12) also demonstrate that difference feature
maps can better locate possible locations of lesions than traditional
attention.

We further conduct experiments to evaluate the selection of � in the
total loss calculation. The quantitative results are shown in Table 6.
When � = 0, the model achieves lower performance on dice score due
to lack of alignment of features. In this paper, we use � = 1 in all
experiments because it achieves the best performance on dice score.

Fig. 13 further explains how difference aware module works. The
feature maps from different modal groups exhibit opposite pixel intensi-
ties in the lesion area. By subtracting the feature maps, the highlighted
areas in the blood parameter features (CBF, CBV) that are not related
to the lesion area are suppressed. On the other hand, the highlighted
regions of interest in temporal parameter features (MTT, TMax), which
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Fig. 12. Examples of the attention maps on ISLES2022 dataset.

Fig. 13. Through difference aware skip connection, the lesion area is further
highlighted, and the unrelated area is suppressed.

represents the possible lesions are further enhanced and supplemented.
These help the network reduce the influence of irrelevant information
and focus attention on the lesion areas.

5. Conclusion

In this study, we propose MDANet, a novel multimodal brain stroke
segmentation framework. Our approach is motivated by observing
lesion characteristics of stroke images from different modalities. We
design the difference aware module to extract the mismatched features
between modalities and transfer the obtained difference feature maps
through a difference aware skip connection. We further introduce
a similarity loss function to align features in the healthy area to
mitigate noise caused by grayscale differences in multimodal images,
improving the model’s concentration of the potential lesions. For the
multimodal feature fusion, we propose a graph-based fusion block. Two
distinct graph embedding strategies are developed to build the graph
by modeling the features from channel and space perspectives, and the
interaction between modalities is realized based on graph convolution.
Our MDANet is evaluated on the ISLES2018 and ISLES2022 datasets.
The experimental results demonstrate that MDANet surpasses many
existing classic methods, and the proposed components have a positive
impact on the segmentation outcomes. However, MDANet still has
some limitations. Our method lacks supervision of the lesion edges,
which may lead to the model being insensitive to the boundary of the
lesion area. The introduction of dual-encoder and graph convolution
module may also bring additional computational complexity to affect
the efficiency of the network. In the future work, we aim to solve the
above problems by further exploring the utilization of features from
different modalities, investigating and developing more effective and
efficient fusion strategies for multimodal inputs. Additionally, we plan
to extend the proposed method to tackle other multimodal medical
segmentation tasks.
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