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Background and objectives: To improve lung nodule classification efficiency, we propose a lung nodule 

CT image characterization method. We propose a multi-directional feature extraction method to effec- 

tively represent nodules of different risk levels. The proposed feature combined with pattern recognition 

model to classify lung adenocarcinomas risk to four categories: Atypical Adenomatous Hyperplasia (AAH), 

Adenocarcinoma In Situ (AIS), Minimally Invasive Adenocarcinoma (MIA), and Invasive Adenocarcinoma 

(IA). 

Methods: First, we constructed the reference map using an integral image and labelled this map using a 

K-means approach. The density distribution map of the lung nodule image was generated after scanning 

all pixels in the nodule image. An exponential function was designed to weight the angular histogram for 

each component of the distribution map, and the features of the image were described. Then, quantitative 

measurement was performed using a Random Forest classifier. The evaluation data were obtained from 

the LIDC-IDRI database and the CT database which provided by Shanghai Zhongshan hospital (ZSDB). In 

the LIDC-IDRI, the nodules are categorized into three configurations with five ranks of malignancy (“1” to 

“5”). In the ZSDB, the nodule categories are AAH, AIS, MIA, and IA. 

Results: The average of Student’s t -test p -values were less than 0.02. The AUCs for the LIDC-IDRI database 

were 0.9568, 0.9320, and 0.8288 for Configurations 1, 2, and 3, respectively. The AUCs for the ZSDB were 

0.9771, 0.9917, 0.9590, and 0.9971 for AAH, AIS, MIA and IA, respectively. 

Conclusion: The experimental results demonstrate that the proposed method outperforms the state-of- 

the-art and is robust for different lung CT image datasets. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Lung cancer is a disease with significant prevalence in several

ountries around the world [1] . Improving the level of early di-

gnosis and the identification of small lung adenocarcinoma has

een always an important topic for imaging studies. In the field

f clinical medicine, ground-glass opacity (GGO) and ground-glass
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odules (GGN) appear as a tiny cloudy region in a CT image [2] .

y measuring the tiny region of a GGN at a high resolution, the

rea can be classified as one of three types: a pure GGN (pGGN), a

ixed GGN (mGGN) (or a part-solid nodule (PSN)) and a solid nod-

le (SN). When the pGGN shows a clear edge density, then translu-

ent, non-solid nodules at the opposite edge are less clear than the

art-solid nodule with regard to the low-energy region [3] . 

In 2011, the International Association for the Study of Lung

ancer (IASLC), the American Thoracic Society (ATS) and the Eu-

opean Respiratory Society (ERS) proposed a new international

ulti-disciplinary classification system for lung adenocarcinoma

4] . The possible classes are atypical adenomatous hyperplasia

AAH); adenocarcinoma in situ (AIS); minimally invasive adeno-

arcinoma (MIA); and invasive adenocarcinoma (IA). The degree of
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risk in each of these classes is increasing. The classification of lung

adenocarcinomas from AAH to IA will have great significance for

clinical auxiliary diagnoses and have great significance in improv-

ing the 5-year survival rate. 

Quantitative methods mainly use a combination of image fea-

tures and classifiers for the classification and recognition of lung

nodules. There are several features, namely, 2D shape, 3D shape

[18] , texture [5] , wavelet transform [9] , or density distribution fea-

tures [11] . The common classifiers are ANN [16] , SVM [13] , CNN

[24] , Random Forest [27] and deep learning [17] . 

Reeves et al. [6] at Cornell University calculated the morphol-

ogy, density features, surface curvature and edge gradient of nod-

ule images to construct 46 dimensions of 3D features, and used

classification methods to analyse the classification of the risk of

pulmonary nodules (benign/malignant) from the Public Lung Im-

age Database (ELCAP) [7] and the National Lung Screening Trial

(NLST) [8] database. The results obtained showed almost 70% clas-

sification accuracy at optimal parameters. Lee HY et al. [15] per-

formed a quantitative analysis of preoperative CT imaging met-

rics to distinguish invasive adenocarcinoma from AIS, MIA and

showed that the classification performance is good. For the Lung

Image Database Consortium and Image Database Resource Initia-

tive (LIDC-IDRI) [14] , Han et al. [5] used image texture features to

classify the risk of pulmonary nodules into two classes, benign and

malignant. Dhara et al. [13] also classified the pulmonary nodules

into benign and malignant categories for the LIDC-IDRI database.

They used the same configurations as Han et al. [5] . The features

include shape and texture of the image. 

Maldonado et al. [11] proposed the CT value density distribu-

tion calculation method. First, they collected the image block set

(block sizes as 9 × 9) from nodule CT images. Then, they used an

affinity propagation clustering approach to classify the correlation

matrix of the image block set. After that, they scanned the testing

nodule image, calculated the density level for pixels and exported

the feature vector. Finally, the different categories of pulmonary

nodules were recognized by analysing the components of the fea-

ture vector. Mayo Clinic Medical Center [10–12,19] introduced an

effective computer-aided nodule assessment and risk yield (CA-

NARY) system, which proposed the determination of lung nodule

classification and risk prediction based on the CT densities of the

nodule images. The CANARY system which measured the classifica-

tion of the images as good (G), intermediate (I), or poor (P) cases

of benign or malignant lung nodules [11] . 

To optimize the classification performance for lung adenocarci-

noma and improve their clinical significance, this article proposes

an effective set of lung CT image density distribution features for

pulmonary nodule risk classification. We proposed a nodule im-

age feature of weighted grey scale angular density distribution.

The remainder of this paper is organized as follows: In Section 2 ,

we introduce the material preparation. In Section 3 , we formulate

the proposed framework of weighted grey scale angular density

distribution feature extraction, which includes unsupervised fea-

ture representation and pattern recognition models. In Section 4 ,

we present the experimental results of the process outlined in

Section 3 and show an analysis of the results. In Section 5 , we con-

clude the paper. 

2. Materials 

In this paper, the open data set LIDC-IDRI and the data set

provided by Shanghai Zhongshan Hospital were used to validate

the classification performance for the proposed algorithm. The ro-

bustness and the universality of the proposed method have been

proved via different data sets for case area, imaging characteristic

and classification modality. 
.1. Pre-processing for the LIDC-IDRI database 

The CT images of 1018 patients were downloaded from The

ancer Imaging Archive (TCIA) Public Access Portal [20] . We used

dditional XML files to locate the nodule region and export its ma-

ignancy level. The statistics for the LIDC-IDRI database are shown

n Table A1 (see Table A1 in the Appendix). The pixel spacing

anged from 0.5 to 0.8 mm, and the slice thickness ranged from 0.6

o 5.0 mm. The major diameter of the nodules ranged from 2.79 to

5.77 mm. 

For the nodule selection of LIDC-IDRI dataset, every nodule was

valuated for the degree of malignancy by up to four radiologists.

here were many nodules that were assessed with differing threat

evels by the radiologists. The malignancy levels were from rank

1” to rank “5” (five levels), rank “1” or “2” of nodule is regarded

s benign, rank “4” or “5” is regarded as malignant and rank of

3” has uncertain malignancy [5] . Some nodules were ranked 1,

, 3 or 3, 4, 5 at the same time. To ensure balance of the num-

er of nodules containing different ranks, we preferred the rank

hich the sample number is less than the others. For example, a

odule that was assessed at the malignancy was given the smaller

ample number of the ranks, and at the same time, the nodule

as removed from the others group. Specially, we removed all the

odules which appeared to be calcified along with nodules with a

ajor length diameter that was > 16 mm. The remaining data set

ontained 1318 nodules, where the samples of rank “1” to “5” are

39, 392, 393, 257 and 137, respectively. Han et al. [5] defined the

isk levels of nodules by three configurations. Configuration 1 clas-

ifies the rank of “1” or “2” as benign and “4” or “5” as malignant.

onfiguration 2 classifies the rank of “1”, “2”, or “3” as benign and

4” or “5” as malignant. Configuration 3 classifies the rank of “1”

r “2” as benign and “3”, “4” or “5” as malignant [5,13] . The same

onfigurations are used for the evaluation of the proposed classi-

cation scheme. If the nodules with malignancy rank “3” are dis-

arded, there are 531 benign and 394 malignant nodules; if they

re regarded as benign, there are 924 benign and 394 malignant

odules; and if they are regarded as malignant there are 531 be-

ign and 787 malignant nodules (see Table A2 in the Appendix). 

.2. Lung CT dataset provided by Shanghai Zhongshan Hospital 

ZSDB) 

The dataset was collected from radiology data of 350 pa-

ients, imaging time since 2014 to 2015. All ground-truth samples

ere pathologically defined by four clinical experts at Shanghai

hongshan Hospital. These nodules (4 mm < major length diame-

er < 32 mm) were divided into four categories: AAH, IAS, MIA, and

A. The sample numbers per class are 92, 157, 158, and 188, re-

pectively. The imaging parameters of the ZSDB are the following:

he electric settings are 500 mA and 120 Kv; the size of the im-

ge is 512 × 512; the type is PET/CTQSZLXX; the protocol is 10.1 CT

HEST; the pixel spacing is 0.703125 mm; and the slice thickness

s 0.625 mm. However, the CAD framework proposed in this paper

ill be more effective in the enlarged dataset. More details of the

SDB database are shown in Table A1 in the Appendix. 

. Methods 

The framework of the proposed method is shown in Fig. 1 . 

.1. Pulmonary nodule segmentation 

Several algorithms for pulmonary nodule segmentation have

een proposed, such as Hessian matrix-based methods [21] , the

D fuzzy connectivity-based approach [22] and the active contour-

ased method [23] . In this paper, K-means [25] (K = 3) clustering
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Fig. 1. The framework of the proposed method. 
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s performed in the designated area of the region of interest (ROI).

he proposed segmentation method is applied to extract the nod-

le image of the ZSDB dataset. 

For an image pixel set (x 1 , x 2 ,…, x n ), K-Means clustering aims

o partition the n observations into K ( ≤ n) sets S = {S 1 , S 2 ,…, S K }

o as to minimize the within-cluster sum of squares (sum of dis-

ance functions of each point in the cluster to the K center). In

ther words, its objective is to find: 

rg min 

S 

K ∑ 

i =1 

∑ 

x ∈ S i 
|| x − μi | | 2 (1) 

The lung parenchyma segmentation method based on K-Means

nd morphological CLOSING-operation was applied to extracted

ung region in CT image. Firstly, K-Means unsupervised approach

as performed to clustering the lung CT image, and then the tho-

acic and course lung area were extracted. Considering the case

f the juxta-pleural and pleural-tail nodules, this paper uses the

losed operation to repair and optimize the edge of the lung

arenchyma binary image and export the exquisitely segmented

mage. 

After that, K-Means approach was performed once again to seg-

ent the lung nodule from region of interest (ROI). The back-

round and redundant area are eliminated by analysing the clus-

ering results, and the lung nodule area in the ROI is extracted.

he image sequence of the nodules is constituted by segmenting

he continuous CT image frames. In each image, the pixels of the

odule region are preserved. The image is then described by the

eometric aspects and the density distributions of the nodules. 

The locations of the lung nodules in pulmonary parenchyma

re random. The experimental results showed the efficiency of

he present method with different com plex levels of lung nodules.

here are some instances that belong to a cloudy and ground-

lass-like appearance of the part-solid nodules, and in addition,

here are nodules that include juxta-vascular or infiltration vessels.
.2. Pulmonary nodule image feature extraction 

.2.1. Reference map construction and labelling 

We propose an image grey scale density distribution calcula-

ion method based on a rescaled integration, which we named as

eference map ( H ( x,y )). The reference map was defined by an inte-

ration image which generated by a ones matrix (Ones(x,y)), with

izes of ( w,h ). We calculated the integration of this ones matrix, as

ollowing: 

 (x, y ) = sum (Ones [: x, : y ]) (2)

Where G ( x, y ) is the integration of ones matrix. 

Then, we rescaled the range of G ( x, y ) to [ −824,176] and the

roposed reference map was extracted, as following: 

(x, y ) = 

G (x, y ) 

max (G (x, y )) 
× 10 0 0 − 824 (3)

In this paper, the unit for each point in reference map would

e set as HU, the range of reference map were from-824 to 176

HU). The value range was set up manually by consulting the opin-

on of radiologists. The minimal and maximal values could be the

ange for lung nodule images, where the value of the upper left

oint stands for the lowest value ( −824 HU) and the maximum

alue (176 HU) was located at the lower right point. After that, a

-means (K = 10) method for the clustering process of the refer-

nce map was performed, and then the label map was calculated.

ig. 2 shows the visualization of the reference map, the histogram

mage, and the label map. 

Considering the stability of the distribution of reference map

lustering center, the size of the reference map should not be too

mall. This ensures the optimization for the distribution map of the

odule image. So, the size of reference map [ w, h ] = [20 0, 20 0] is

hosen in the experiment. By clustering for the reference map, the

lass center tends to stable while the class number is too large.

ence, in order to ensure the optimality of the feature vector and

rogram running time, K = 10 is chosen. 

.2.2. The grey scale density distribution map of lung nodule image 

We used the reference map and the label map to calculate the

ensity distribution level for pixels of nodule images. For each test-

ng pixel in the nodule region, we selected a neighbourhood as a

ize was [5, 5] of testing image block and then found the matching

rea in the reference map. The distance d ( Block, Matched ) from the

esting window to the matching area is minimized. The distance

ollows: 

 ( Block, Matched ) = min ‖ 

Block − Matched ‖ 2 (4) 

here Block and Matched are matrices with the same size of the

esting image block and the matched region in the reference map,

espectively. The corresponding location on the label map of the

atched area (the pixel locations and the points of matched area

ave a one-to-one correspondence) is within the region of one cat-

gory or in the cross-region of two categories, which are labelled

y a continuous value. Therefore, we calculated the round value of

he average value of the corresponding region as the density dis-

ribution level of the testing pixels. 

The density distribution map of the nodule image (D) is as fol-

ows: 

 (i, j) = { g i, j | i ∈ [0 , w ] , j ∈ [0 , h ] } (5)

Where g i,j is the grey scale density distribution level of the pix-

ls in the nodule image. These values describe the difference in

olid degree of the pixels in the pulmonary nodule image. 
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Fig. 2. Reference map and label map. (A) Reference map (sizes as 200 × 200); (B) The histogram of the reference map. The horizontal and vertical are the grey scale levels 

(HU) and its frequency (the number of occurrences of grey scale level) in reference map. This curve appears to follow the exponential distribution. (C) The categories resulted 

from the clustering process and its HU value range (10 categories). The colours of Lime Green, Dark Green, Cyan, Dodger Blue, Navy, Yellow, Peru, Red, Magenta and Purple 

describe the different classes from 1 to 10, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

Fig. 3. The schematic for the weighted angular density distribution feature extraction from the label map of nodule image. Where N and K are the sub-label maps and bins 

number, respectively. 
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3.2.3. Extracting the grey scale angular density distribution feature 

based on exponential weighting 

In Section 3.2.1 and 3.2.2 , we proposed a 10-level grey scale

density distribution map to describe nodule images. This type of

feature map is insufficient to reflect the directional distribution in-

formation for solid or partly solid elements in a lung nodule. How-

ever, the elemental directional distribution of a nodule is also im-

portant to get more effective features. To solve this problem, we

propose an angular density distribution feature based on exponen-

tial weighting function. The calculation steps are shown in Fig. 3: 

In the framework, firstly, we calculated the centroid of the nod-

ule image, and split the grey scale density distribution map D into

a 10 sub-label map. Then, the locations of the pixels in a sub-

label map were transformed from planar coordinates to angular

coordinates and the angular histograms for each sub-label map

were generated. Finally, we calculated the exponential weighted

histogram to obtain the proposed weighted angular grey scale den-

sity distribution of nodule image. 
i
The local centre ( ̄x , ̄y ) of the nodule image is: 

( ̄x , ȳ ) = 

(∑ h 
x =1 x ( D x,y > 0) ∑ 

( D x,y > 0) 
, 

∑ w 

y =1 y ( D x,y > 0) ∑ 

( D x,y > 0) 

)
(6)

here D is label map (grey scale density distribution map) of nod-

le image was extracted by the proposed method in Section 3.2.2 . 

We resolved the label map of nodule image into 10 sub-label

aps (S) , and then calculated the angular histogram for each sub-

abel map. In this way, the image point (x,y) was transformed to

 r , α), where α was calculated by the following: 

= arg cos 

( 

y √ 

(x − x ) 
2 + (y − y ) 

2 

) 

(7)

When the pixel (x,y) is planning to direction bin(b) if angle α
s followed: 
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Fig. 4. Example of the transformation to the angular coordinate system with angle step θ = 30. (A) Points of nodule image after transform to angle coordinate system; (B) 

Angular histogram of density distribution map. In Fig. 4 (A), ( r , α) is the location in angle coordinate of the image point (x,y). 
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180 × cos ( α) 

θ × π
∈ (b − 1 , b] (8)

The angular histogram illustrates the image points in the bins,

nd the angle step ( θ ) and bins (bins number B = 

360 
θ

) are also

irectly related to the nodule size. When the bin spacing is too

mall, the number of pixels in the bins is rather small and will

educe the distinction between the bins, so we chose minimum

ngle step to evaluate the proposed method as 30. 

An example for the transformation to the angular coordinate

ystem of the local (x,y) in the sub-label map S(k) and angular his-

ogram extraction are show in Fig. 4 with θ = 60 o and bins = 6. 

In the sub-label map S(k), the feature component in f ( k,b ) for the

in(b) direction is as follows: 

f (k,b) = 

∑ ∑ 

∣∣( r, α) k,b 

∣∣
︸ ︷︷ ︸ 

Angular histogram of density distribution 

× w exponential ︸ ︷︷ ︸ 
weighted 

(9) 

The angular histogram shows the spatial distribution for pix-

ls of the nodule image in different directions. We analysed sta-

istically the number of pixels of the different directions on the

ame sub-label map so that the feature vector shows the spa-

ial distribution relative to the nodule centre of these pixels. The

mage pixel ( r , α) k,b belongs to the direction bin(b) in sub-label

ap S(k). In this way, the weighted w exp onential is the exponen-

ial function to the amplitude of mean location in the direction

f bin(b) . The average coordinate of the pixels in direction bin(b)

s ( x a v erage , y a v erage ) = ( 
∑ 

x x 
n , 

∑ 

y y 

n ) , where (x,y) is pixel in the direc-

ion bin(b) of sub label map S(k), and n is pixel number in this

egion ( n = 

∑ 

x 

∑ 

y | (x, y ) | ). Therefore, the weighted w exp onential is

s follow: 

 exponential = exp 

⎛ 

⎝ −
√ 

3 ×
(
x 2 a v erage + y 2 a v erage 

)
max ( x a v erage , y a v erage ) 

2 
+ ξ

⎞ 

⎠ (10) 

here ξ is the repair parameter. Parameter ξ adjusts the value of

he weight for the small nodules (nodules where the pixel coor-

inates are close to zero). The commonly selected value of ξ in

hese experiments is from 0.001 to 0.1. This weight enhances the

ffect of the pixels closer to the centre and reduces the effect of

he pixels on the borders at the same time. The main purpose is to

mprove the fault tolerance rate for the lung nodule segmentation,

nd remove the interference factors in the border zone, i.e., vessel,

ronchus, chest wall. Meanwhile, improve the significant influence

f the solid region which located at the centre of the nodule. In
ddition to the selection of angle step, θ depends on the size of

he nodule image. In this way, a bigger step is a smaller image,

nd vice versa. 

Finally, the normalized exponential weighting angular density

istribution feature F G was extracted as follows: 

 G = { 100 × f (k,b) ∑ 

k 

∑ 

b 

f (k,b) 

| k ∈ [ 1 , K ] , b ∈ [ 1 , B ] } (11)

The factors were computed in different directions for each sub-

abel map. All the components were sequenced to construct the

eighted grey scale angular density distribution feature of the

odule image. The feature was used to characterize the risk level

f the pulmonary nodule. We have taken the concept of the den-

ity distribution and its calculation from the method of Maldonado

t al. [10–12] and optimized that concept. The method presented

y Maldonado et al. [10–12] is mainly based on collected image

locks to extract the density distribution feature of the nodule im-

ge. The image block set is randomly collected from the pulmonary

odule image. The histogram distribution of all image blocks is not

table. The grey scale density distribution of a lung nodule image

ay not achieve the optimal results. Moreover, there is lack of ro-

ustness to the process for different databases. 

In the proposed method, the reference map generated based on

he integration image was used instead of the distance matrix of

mage cells. The HU range covers overall values of the grey scale,

hich range from the value of the air to the calcification region

n the lung CT image. The histogram of the reference map is more

at and smooth than the distance matrix, and it basically obeys an

xponential distribution. In this paper, the calculated density dis-

ribution of the nodule image will achieve the optimal result. The

ensity distribution calculated from the labelled reference map is

nified for different datasets. We also calculated the spatial rela-

ionship between the factors of feature vectors. 

.3. Pulmonary nodule image classification 

We used the p values to measure the significance of the fea-

ure set. A scalar was calculated from the multi-dimension feature

ector by the sum of the gradient. And then, the cross-validation

- values between classes is generated via a two-tailed Student’s

est. For the nodule classification, the quantitative measurement

as performed using the well-known Random Forest classifier. The

rea under the receiver operating curve characteristic (AUC) value

nd cross-validation score were used to evaluate the training pa-
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Fig. 5. Pulmonary nodule image segmentation and characterization process for the ZSDB and the LIDC-IDRI databases. (A) Nodule image segmentation; (B) Image character- 

ization. (C) and (D) show the examples of the density distribution feature (Percentage) for ZSDB and LIDC-IDRI databases, respectively. (C) Rows 1 to 4 are the features of 

AAH, AIS, MIA, and IA, respectively; (D) Rows 1 to 5 are the features of the nodule from rank 1 to 5, respectively. 
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rameters [26] . The AUC of the ROC is computed using the Sensitiv-

ity and 1-Specificity, where 

Sensit i v it y = 

T P 

T P + F N 

(12)

Speci f ity = 

T N 

T N + F P 
(13)

Cross-validation is scored to multi-class classification where the

accuracy is calculated as follows: 

Accuracy = 

T P + T N 

T P + F P + T N + F N 

(14)

where: 

TP (True Positive rate) = correctly classified positive cases; 

TN (True Negative rate) = correctly classified negative cases; 

FN (False Negative) = incorrectly classified positive cases; and 

FP (False Positive) = incorrectly classified negative cases. 

4. Experimental 

The proposed classification scheme and the competing tech-

nique are evaluated on the data set of 1318 and 595 nodules of

the LIDC-IDRI and ZSDB, respectively. The classification uses the

Random Forest algorithm with two classes (Benign/Malignant) for

LIDC-IDRI and four classes (AAH, AIS, MIA, IA) for ZSDB databases. 

4.1. Pulmonary nodule segmentation 

The K-means clustering is used to segment the lung nodule in

the region of interest. There are some instances that belong to a

cloudy and ground-glass-like appearance of the part-solid nodules,

and there are nodules that include vascular infiltration. The seg-

mentation method based on K-means clustering has a good seg-

mentation effect with clear edges on (part) solid or ground-glass
odules, which obtain well-circumscribed, juxta-vascular, juxta-

leural or pleural tail nodules. Segmentation images of lung nod-

les are shown in Fig. 5 (A). 

.2. Weighted grey scale angular density distribution feature 

xtraction 

For LIDC-IDRI, we found the location of nodules using the coor-

inates marked in the attached XML file. For ZSDB, the method de-

cribed in Section 3.1 was used to extract the correct coordinates

f the nodule edges. The feature extraction method proposed in

ections 3.2 and 3.3 was used to calculate the feature vector of

odule images. Our work used a large number of small size nod-

les, so the window size is small. Choosing the number of bins is

lso directly related to the nodule size. When the bin spacing is

oo small, the number of pixels in the bins is rather small and will

educe the distinction between the bins. 

We set three types of the angle step are (30 ◦, 60 ◦, 90 ◦).

he features extracted using the proposed method are named as

he Exponential Weighting based feature (Ew). The different angle

teps constructed 3 sets of weighted angular density distribution

eature, such as Ew-30, Ew-60 and Ew-90. The features have differ-

nce responses to the identification process of nodule image set. 

The characterization process using the proposed method of the

egmented nodule images are shown in Fig. 5 (B). The meaning of

hese colours is the same as the colour code in Fig. 2 . The features

f AAH, AIS, MIA were mainly composed of lower density levels.

hese factors corresponded to the GGO regions of nodule images.

therwise, the nodules of the IA category have a large number of

igher density level components. The result accorded with the ra-

iologic characteristics, since IA nodule images are composed of a

arge area of the solid region ( Fig. 5 (C)). Fig. 5 (D) shows the visu-

lization of normalization density distribution map for LIDC-IDRI. 
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Fig. 6. Lung nodule angular histogram exponential weighted features extraction. (A)Source image of the pulmonary nodule, the red line is the nodule region; (B) Normal- 

ization of density distribution feature vector; (C) to (E) are Ew-30, Ew-60, Ew-90, respectively. 

Table 1 

p- values of 3 features for different LIDC-IDRI data configurations and for the ZSDB database. 

LIDC-IDRI ZSDB 

Config. 1 Config. 2 Config. 3 AAH-AIS AAH-MIA AAH-IA AIS-MIA AIS-IA MIA-IA 

Ew-30 0.0043 0.0043 0.0120 0.0 0 05 0.0311 0.0 0 09 1.96e −06 4.47e −06 3.21e −05 

Ew-60 5.88e −07 1.00e −06 0.0019 0.0 0 03 0.0260 0.0 0 04 6.14e −08 6.69e −07 4.79e −06 

Ew-90 1.68e −08 2.05e −08 0.0012 0.0 0 03 0.0103 3.88e −08 2.14e −14 2.09e −14 6.99e −12 

Average 0.0014 0.0014 0.0050 0.0 0 03 0.0224 0.0 0 04 6.74e −07 1.71e −06 1.23e −05 
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The examples of exponential weighted grey scale angular den-

ity distribution feature extraction are shown in Fig. 6 . There are

hree types of features computed from the segmented nodule are

hown in Fig. 6 (C) to (E). The proposed feature vectors can de-

cribe the spatial correlation between pixels in the nodule image.

he different distribution and dimensions of feature vectors were

xtracted from the same density distribution map. Varying bins or

eighting functions can make a difference to the amplitude of fac-

or vectors. In this process, the smaller the bins get, the longer the

ector increases and the smaller the amplitude for each factor. This

s a more in-depth study compared to Maldonado et al. [11] . 

.3. Feature set analysis 

The results of Sensitivity and Specificity f values for classification

rom the LIDC-IRDI and ZSDB databases are shown in Table 1 for

ll features. The averages of p values are less than 0.02 for the eval-

ation data. In the evaluation for the feature set of LIDC-IDRI, the
 values of Configuration 3 are higher than those of Configuration

 and Configuration 2. Where, the highest p value is 0.0120 with

he Ew-90 feature. The result shows the rank 3 nodules are more

nclined to be characterized as benign. For the feature set of ZSDB,

he larger p values are for AAH and MIA. The best saliency value

s that of AIS with IA. That is, because of the interference of the

uxta-vascular nodules in ZSDB. 

.4. Pulmonary nodule classification 

.4.1. Classification for LIDC-IDRI database 

In the experiments, all the features are used together to evalu-

te the proposed method. The best classification effect of the pro-

osed system was a combination of the performance for all the

eatures. The training and testing process used ten-fold modes for

IDC-IRDC and five-fold modes for ZSDB. The parameters of Sensi-

ivity, Specificity, AUC and Accuracy are the top of 500 times for

ach evaluated data set. 
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Fig. 7. The ROC curves and classification accuracy for different configurations from the LIDC-IDRI. (A) Configuration 1; (B) Configuration 2; (C) Configuration 3; (D) Classifi- 

cation accuracy for different configurations from the LIDC-IDRI with the proposed three different features. 

Table 2 

Sensitivity and Specificity of 3 features for Configuration 1, Configuration 2 and Configuration 3. 

Configuration1 Configuration2 Configuration3 ZSDB 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

Ew-30 0.9433 0.9428 0.9065 0.9200 0.7804 0.8289 0.8409 0.9535 

Ew-60 0.9230 0.9375 0.8990 0.9166 0.7608 0.8266 0.8550 0.9599 

Ew-90 0.9318 0.9655 0.90 0 0 0.9411 0.7380 0.8518 0.8280 0.9523 

Average 0.9327 0.9486 0.9018 0.9259 0.7597 0.8358 0.8413 0.9552 
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The proposed method in this paper used the nodule image fea-

tures of exponential weighting grey scale angular density distri-

bution, and a Random Forest algorithm is performed to classify

the pulmonary nodules. This method automatically increases the

significant components of feature vectors and reduces the inter-

ference factors. The results of Sensitivity and Specificity for the

LIDC-IDRI and ZSDB datasets are shown in Table 2 . The compar-

isons with the methods of Dhara [13] and Han [5] are provided

in Table 3 for different configurations. The statistics show that the

sensitivity is more statistically significant than the result of Dhara

et al. The AUC and classification accuracy for different configura-

tions are shown in Fig. 7 . The best values of AUC and Accuracy of

the 3 features are (0.9568, 0.9320, 0.8288), (0.9032, 0.8863, 0.7727)
 Z  
or Configurations 1, 2, and 3, respectively. The classification ac-

uracy of Configuration 1 is higher than that of Configuration 2

nd 3. The worst was the result of Configuration 3. The effective-

ess of the proposed method is just a little less than Dhara et al.

13] for the AUC value in Configuration 3. However, the other eval-

ation statistics are higher for the three configurations. The clas-

ification accuracy of the proposed method outperforms the most

ecent classification work. 

.4.2. Classification for ZSDB database 

The boxplots for sensitivity, specificity, AUC and accuracy of

ultiple classes with 3 features in 500 evaluation times for the

SDB dataset are provided in Fig. 8 . The average of Sensitiv-
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Fig. 8. Boxplots for sensitivity, specificity, AUC and accuracy of multiple classes with 3 features in 500 evaluation times for the ZSDB dataset. (A) Sensitivity; (B) Specificity; 

(C) ROC; (D) Accuracy. 

Table 3 

AUC of ROC values for three configurations from the LIDC-IDRI compared with Dhara et al. and Han et al. 

Samples Configuration1 Configuration2 Configuration3 

Sens. Spec. AUC Sens. Spec. AUC Sens. Spec. AUC 

Proposed 1318 0.9327 0.9486 0.9568 0.9018 0.9259 0.9320 0.7597 0.8358 0.8288 

Dhara et al. 0891 0.8973 0.8636 0.9505 0.8289 0.8073 0.8822 0.7614 0.7491 0.8488 

Han et al. 1356 0.8935 0.8602 0.9450 0.8023 0.7914 0.8703 0.7467 0.7240 0.8315 

∗Sens.: Sensitivity 
∗Spec.: Specificity 
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ty, Specificity, AUC and Accuracy are 0.8704, 0.9697, 0.9715 and

.9075, respectively. In the evaluation of multiple classes, the best

f ROC and Accuracy are (0.9771, 0.9917, 0.9590, 0.9971), and

0.7478, 0.9167, 0.7450, 0.9567) for AAH, AIS, MIA, and IA, respec-

ively. The true positive rate (Sensitivity) of the AIS and IA classes

s higher than that of the other classes. At the same time, for

he AAH category, the false positive rate is lower than that of the

lasses of AIS, MIA and IA. However, the nodule samples of MIA

re easy to be confused with the AIS or IA classes. The main rea-

on is the influence of the nodule surrounding the factors of vas-

ular vessels. The experimental results show the high performance

or an early cancer detection process. 
The difference in the mean of the recognition rates is not sig-

ificant for the angle steps (30, 60 and 90), and they are close up

.85. However, the change trend of sensitivity and specificity are

he opposite for the features, while the ROC of Ew-90 is better

han the others, as shown in Fig. 8 . The sensitivity is increasingly

ith the higher angle step, and the best of the mean of sensitiv-

ty is bigger than 0.95 (mean of standard deviation less than 0.05)

ith Ew-90 feature. At the same time in these cases, the high-

st specificity is close to 0.95 (standard deviation less than 0.05)

ith Ew-30 feature. In summary, the experiments show the high-

erformance for nodule risk classification of the proposed feature

xtraction methods for Chinese lung cancer cases. 
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5. Discussion 

For the pulmonary nodule risk classification problem, we pro-

posed an image characterization method based on a grey scale

density distribution. We designed a clustered integral image (size

of 200 × 200, with HU values ranging from −824 to 176) based on

a K-means algorithm (K = 10) to extract the image density of nod-

ules. For each nodule, we calculated the angular histogram features

(angle steps are 30 ◦, 60 ◦, 90 ◦), and weighted the features using

an exponential distribution function. For the different angle steps,

the classification performance of the feature set extracted from the

smaller angle step is better than the others. Although the p- value

of Ew-30 is larger than the other two features, but the ROC and ac-

curacy are better. The best AUCs were 0.9568, 0.9320, and 0.8288

for Configurations 1, 2, and 3, respectively. The proposed method

is compared with the recent classification work of Dhara et al.

[13] and Han et al. [5] for the evaluated data of LIDC-IDRI. The con-

figuration of the nodules is suggested by Han et al., they proposed

a nodule classification based on image texture feature with 1356

samples. The results show that the differentiation rate and AUC

are 90% and 92.7%, respectively. Dhara et al. also used this schema

to validate their approach. They used 2D shape-based, 3D shape

based, margin-based, and texture-based features of nodules image.

The classification effect is good for complex texture features. The

evaluated data was 891 nodules from the LIDC-IDRI, with most of

data points being solid nodules. As a result, maximum A z values

were above 0.9505 for Configuration 1. In addition, the experiment

data suggests that nodules with composite rank of malignancy “3”

share more common features with the benign category, which fits

with the discussion of Han [5] and Dhara [13] . The proposed classi-

fication scheme outperforms the state-of-the-art algorithms for all

configurations for the LIDC-IDRI dataset. 

At the same time, the evaluation of the ZSDB dataset shows the

efficient performance of the proposed method. This method can

distinguish the nodule categories into AAH, AIS, MIA and IA with

high precision. The best average AUC of 0.9812 is achieved for the

multi-classes validation. In this nodule recognition schema, most

of the previous work did not consider the prediction of AAH with

other categories for lung adenocarcinomas [12,15,19] . Foley et al.

[19] also used CT density distribution features to characterize nod-

ule images for 264 and 294 cases of the Mayo Clinic cohort and the

National Lung Screening Trial study, respectively. The categories of

the dataset are AIS, MIA, and IA. The results show a sensitivity

of 95.4% (95% CI: 75.1% −99.7%) and specificity of 96.8% (95% CI:

82% −99.8%) in the training set and a sensitivity of 98.7% (95% CI:

91.8% −99.9%) and specificity of 63.6% (95% CI: 31.6% −87.6%) in the
Table A1 

Two datasets used to this study. 

LIDC-IDRI database 

Ranks Sample Number Grey Scale (min

“1” 139 −805 to −73 

“2” 392 −821 to −25 

“3” 393 −847 to 11 

“4” 257 −743 to −4 

“5” 137 −719 to 0 

Total 1318 

ZSDB database 

Classes Sample number Ages (Years, Y) Gender (Male, M; Fema

AAH 092 63.5 ± 8.5 F:M = 25%:75% 

AIS 157 57 ± 21 F:M = 67%:33% 

MIA 158 56 ± 22 F:M = 77%:23% 

IA 188 58 ± 27 F:M = 51%:49% 

Total 
ndependent validation set. In the comparison with the state-of-

rt, we extend the category to four categories, as AAH, AIS, MIA

nd IA and achieve good results for the classification. The experi-

ental results illustrate the robustness of the proposed method for

ifferent lung CT image datasets and different forms of classifica-

ion. 

. Conclusion 

The paper presents an angular gray scale density distribution

eature weighted by exponential function for lung nodule image

isk classification. In the proposed method, the pixels in nodule

mage are divided into different Fdistribution levels to generate

he density distribution features. The experiments show a good

lassification effectiveness for different validation datasets such

s LIDC-IDRI and ZSDB. A random forest classifier is performed

or training and testing. The categories are Benign/Malignant and

AH/AIS/MIA/IA for LIDC-IDRI and ZSDB, respectively. A number of

xperiments were conducted with the proposed method as well as

ome other existing methods for the validation in LIDC-IDRI. 

The experimental results provide a great reference in clinical

iagnosis as well as the development of electronic diagnostic sys-

ems that detect early-stage lung cancer for patients in China or

sia. It has significance to support doctors in performing clinical

iagnoses for lung cancer patients and increasing their survival

ate when detecting first-stage lung cancer areas in time. Further

ork will be concerned about more effective feature extraction al-

orithms for proper representation of nodules in the feature space

nd will improve the performance of classification. 
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ppendix 
Tables A1 and A2 . 

 to max, HU) Major length Diameter (min to max, mm) 

2.79 to 11.29 

3.53 to 13.65 

3.46 to 14.32 

4.28 to 15.77 

5.08 to 15.51 

le, F) Grey Scale (min to max, HU) Diameter (min to max, mm) 

−810.95 to −6.24 4.12 to 13.93 

−869.56 to −453.33 4.82 to 20.88 

−845.01 to 33.61 4.05 to 30.75 

−450.63 to 18.87 5.57 to 31.67 

595 

http://dx.doi.org/10.13039/501100001809
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Table A2 

The sample number for each configuration of the LIDC-IDRI database. 

Configurations Benign Malignant 

Ranks Samples Ranks Samples 

Configuration 1 ‘1’ and ‘2’ 531 ‘4’ and ‘5’ 394 

Configuration 2 ‘1’, ‘2’, and ‘3’ 924 ‘4’ and ‘5’ 394 

Configuration 3 ‘1’ and ‘2’ 531 ‘3’, ‘4’ and ‘5’ 787 

R
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