
Received: 19 July 2021 Revised: 13 September 2021 Accepted: 30 September 2021

DOI: 10.1002/mp.15298

R E S E A R C H A RT I C L E

3D gray density coding feature for benign-malignant
pulmonary nodule classification on chest CT

BingBing Zheng1,# Dawei Yang2,3,# Yu Zhu1 Yatong Liu1 Jie Hu2

Chunxue Bai2,3

1 School of Information Science and
Engineering, East China University of Science
and Technology, Shanghai, China

2 Department of Pulmonary Medicine,
Shanghai Respiratory Research Institute,
Zhongshan Hospital, Fudan University,
Shanghai, China

3 Shanghai Engineering Research Center of
Internet of Things for Respiratory Medicine,
Shanghai, China

Correspondence
Yu Zhu, School of Information Science and
Engineering, East China University of Science
and Technology, Shanghai 200237, China.
Email: zhuyu@ecust.edu.cn
Chunxue Bai, Department of Pulmonary
Medicine, Shanghai Respiratory Research
Institute, Zhongshan Hospital, Fudan
University, Shanghai 200032, China.
Email: bai.chunxue@zs-hospital.sh.cn

#BingBing Zheng and Dawei Yang are co-first
authors.

Funding information
Shanghai Pujiang Program, Grant/Award
Number: 20PJ1402400; Science and
Technology Commission of Shanghai
Municipality, Grant/Award Number:
20DZ2261200; Shanghai Engineer &
Technology Research Center of Internet of
Things for Respiratory Medicine, Grant/Award
Number: 20DZ2254400

Abstract
Purpose: Early detection is significant to reduce lung cancer-related death.
Computer-aided detection system (CADs) can help radiologists to make an
early diagnosis. In this paper,we propose a novel 3D gray density coding feature
(3D GDC) and fuse it with extracted geometric features. The fusion feature and
random forest are used for benign–malignant pulmonary nodule classification
on Chest CT.
Methods: First, a dictionary model is created to acquire codebook. It is used
to obtain feature descriptors and includes 3D block database (BD) and dis-
tance matrix clustering centers.3D BD is balanced and randomly selecting from
benign and malignant pulmonary nodules of training data. Clustering centers is
got by clustering the distance matrix, which is the distance between every two
blocks in 3D BD. Then, feature descriptor is obtained by coding the pulmonary
nodule with codebook, and 3D GDC feature is the result of histogram statistics
on feature descriptor. Second, geometric features are extracted for fusion fea-
ture.Finally, random forest is performed for benign–malignant pulmonary nodule
classification with fusion feature of the 3D gray density coding feature and the
geometric features.
Results: We verify the effectiveness of our method on the public LIDC-IDRI
dataset and the private ZSHD dataset. For LIDC-IDRI dataset, compared with
other state-of -the-art methods, we achieve more satisfactory results with 93.17
± 1.94% for accuracy and 97.53 ± 1.62% for AUC.As for private ZSHD dataset,
it contains a total of 238 lung nodules from 203 patients.The accuracy and AUC
achieved by our method are 90.0% and 93.15%.
Conclusions: The results show that our method can provide doctors with more
accurate results of benign–malignant pulmonary nodule classification for aux-
iliary diagnosis, and our method is more interpretable than 3D CNN methods,
which can provide doctors with more auxiliary information.

KEYWORDS
3d gray density coding feature,benign–malignant classification,geometric features,pulmonary nod-
ules, random forest

1 INTRODUCTION

Lung cancer is a common cancer and the leading
cause of cancer-related deaths in both man and
woman worldwide.1 The recent 5-year survival rate for
all stages combined is 18.6% but decreases further to
5% for advanced-stage disease.2,3 Early detection is

significant to reduce cancer-related death.4 Computed
tomography (CT) scanning technique is one of the most
important techniques in medical imaging. Compared
with x-ray, CT technology provides doctors with more
information through higher sensitivity and resolution.
According to the study of National Lung Screening Trial,
the use of low-dose CT scans in lung cancer screening
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TABLE 1 Related works about benign–malignant lung nodule classification on 3D

Methods Dataset Methods Class Result

Al-Shabi et al.20 LIDC-IDRI19 Proposed 3D axial-attention Benign–malignant AUC:96.17
Acc:92.81

Sen:92.36

Afshar et al.21 LIDC-IDRI 3D Multi-scale capsule network Benign–malignant Acc:93.12
AUC:96.4

Xie et al.22 LIDC-IDRI Proposed fusion 3D feature
and Adaboost-BPNN

Benign–malignant AUC:96.65
(malignancy rate 3
were discarded)

Yan et al.23 LIDC-IDRI A novel 3D CNN Benign–malignant Acc:87.4
Sen:89.4

Spe85.2

Shen et al.24 LIDC-IDRI Multi-crop
Convolutional
Neural

Network

Low malignancyHigh
malignancy

Acc:87.14AUC:93
Spe:93

Sen:77

Xie et al.25 LIDC-IDRI Multi-view knowledge-based
collaborative
(MV-KBC) deep model

Benign–malignant Acc:91.60
AUC:95.70

Ren et al.27 LIDC-IDRI Proposed MRC-DNN Benign–malignant Acc:0.90
Sen:0.81

Spe:0.95

Tong et al28 LIDC-IDRI 3D-CNN and SVM with
MKL algorithms

Benign–malignant Acc:90.65
Sen:87.50

Spe:94.12

reduced the possibility of smokers’ lung cancer related
death about 20%.5

Radiologists can make a correct diagnosis with these
medical imaging techniques, but too many images
may greatly increase workload. Farther, with the rapidly
increasing demand in health care and physical exami-
nation, a large number of experienced radiologists are
required for screening. Mistakes caused by various rea-
sons during manual screening can lead to unnecessary
personnel injury. To alleviate the problem, computer
aided diagnosis system (CADs) is a good choose.
CADs can automatically locate and analyze pulmonary
nodules to provide doctors with auxiliary diagnosis and
even possible treatment options.6–9 It can greatly reduce
the workload of radiologists. This paper focuses on the
pulmonary nodules’ benign and malignant classification
method with 3D features extraction based on PET/CT
images. The main innovations are as follows:

1. This paper presents a novel 3D gray density cod-
ing (3D GDC) feature. First, 3D pulmonary nod-
ules are coded by establishing a dictionary model.
Then, histogram statistics is performed on coding
results to get 3D GDC feature. 3D GDC feature can
characterize the distribution of different gray den-
sity levels in pulmonary nodules, which represents
significant discrimination between benign and malig-
nant pulmonary nodules on CT images. The experi-
ments prove the effectiveness of 3D GDC for benign-
malignant pulmonary nodule classification.

2. Geometric features (GFs) of 3D pulmonary nodules
are extracted and fused with extract 3D GDC fea-
ture as the final feature, including depth, width and
height of external matrix, longest diameter,and short-
est diameter. It can provide additional auxiliary infor-
mation to obtain more satisfactory diagnostic results.

3. We evaluate the proposed methods on two datasets.
For public LIDC-IDRI dataset, the proposed fusion
feature can get state-of -the-art results with 97.53 ±

1.62% for AUC and 93.17 ± 1.94% for accuracy. For
private ZSHD dataset,significant results are obtained
with 93.15% for AUC and 90.0% for accuracy.

2 RELATED WORKS

Many researchers have proposed methods for CADs
related to lung cancer, such as the detection of
lung nodules,10,11 reduction of false positives of lung
nodules,12,13 and the segmentation of lung nodules.14,15

For the benign–malignant pulmonary nodule classifi-
cation, there have been many excellent works. Some
of them are based on 2D models16–18 and others are
based on 3D models. Table 1 summarizes some related
literature about 3D methods.

Shen et al.22 presented a 3D multi-crop convolutional
neural network (MC-CNN) to automatically extract nod-
ule salient information by employing a novel multi-crop
pooling strategy which crops different regions from con-
volutional feature maps and then applies max-pooling
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F IGURE 1 The flow chart of the proposed method

different times. MC-CNN was verified on the LIDC-IDRI
dataset which includes 880 low malignancy-suspicious
nodules (LMN) and 495 high malignancy-suspicious
nodules (HMN). LMN means that the average malig-
nancy rating in the annotation is less than 3 and HMN is
greater than 3. The best accuracy, AUC, and sensitivity
were 87.14%, 93%, and 77%, respectively. Wang et al.26

proposed a 3D joint deep learning model where the
segmentation can better facilitate the classification
of pulmonary GGNs. It was a cascade architecture
with both segmentation and classification networks.
As a trainable preprocessing module, the segmenta-
tion model provides the classification-guided attention
weight map for the original CT data to achieve better
diagnostic performance.

Ren et al.27 proposed a novel CNN named regular-
ized classification deep neural network (MRC-DNN) to
benign–malignant pulmonary nodule classification on
3D CT. On verification on LIDC-IDRI dataset, the pro-
posed method obtained 0.90 for accuracy with 0.81 for
sensitivity and 0.95 for specificity. Tong et al.28 proposed
CADs for lung nodule diagnosis based on 3D-CNN and
SVM with multiple kernel learning (MKL) algorithms.
The system not only explores the computed tomog-
raphy (CT) scans, but also the clinical information of
patients like age, smoking history, and cancer history.
To extract deeper image features, a 34-layer 3D resid-
ual network (3D-ResNet) is employed. Heterogeneous
features including the extracted image features and the
clinical data are learned with MKL.

3 METHOD

The proposed method mainly includes two parts. The
first part is to extract 3D GDC feature and the geomet-
ric features of pulmonary nodules on CT images. Then
combining the two features, random forest is applied
for benign–malignant pulmonary nodule classification,
as shown in Figure 1. We will introduce the proposed
method in detail as following:

3.1 3D gray density coding feature

The Hounsfield unit (HU) value of pulmonary nodules
on CT images is highly correlated with the classification

of benign and malignant pulmonary nodules. Therefore,
the gray density is one of the important features of
pulmonary nodules. In this paper, 3D GDC feature
is proposed for benign–malignant pulmonary nodule
classification on chest CT.

The extraction of 3D GDC feature is divided into three
steps. First, the dictionary model is created to obtain a
codebook, as shown in Figure 2. The codebook involves
3D block database (BD) and clustering centers CBD.
Second,pulmonary nodules are coded to obtain the fea-
ture descriptors with the obtained codebook, as shown
in Figure 5. Finally, the 3D GDC feature is obtained by
using histogram statistics. Following, the method will be
described in detail.

3.1.1 Dictionary model

Dictionary model is created to obtain codebook. Code-
book includes 3D BD and clustering centers and is used
to code pulmonary nodules for 3D feature descriptors.

3D block database (BD) is the important part of
extracting 3D GDC feature. It contains 3D blocks that
are randomly extracted from 3D pulmonary nodules of
training data. The number and the size of blocks in 3D
BD will determine the effect of feature expression. For
the number of blocks, in order to ensure the diversity
and category balance of blocks in BD, a same number
of 3D blocks are randomly selected from different cat-
egories of pulmonary nodules. For the size of blocks,
because the sizes of pulmonary nodules are between
3 and 30 mm, 3D blocks of appropriate size should be
selected.Large sizes are suitable for big pulmonary nod-
ules, while small size for small nodules.

Suppose the size of 3D block is pD × pW × pH (D, W,
and H mean the depth, length, and width of block), a
sliding window with the same size is used to slide on
the 3D pulmonary nodules of training data to obtain
3D blocks. Only the 3D blocks corresponding to the
foreground region are saved. Then, N blocks are ran-
domly selected from the saved blocks to form 3D BD,
as shown in Figure 2. We extract 800 3D blocks from
each category (benign and malignant),a total of 1600 for
3D BD.

Then, the distances between each two blocks in 3D
BD are calculated to form the distance matrix HBD,
which is a symmetric matrix of size N × N. Each row (or
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F IGURE 2 Dictionary model structure diagram

F IGURE 3 Visualization of distance matrix

column) in HBD is the distance vector between a block
with all blocks in the 3D BD. The commonly used vector
distance calculation methods include Euclidean (EU),
Canberra (CA), Cosine (COS), and City Block (CB). The
experimental results show that using CA distance can
get the best results. The distance formulas for any two
equal length vectors p and q are as follows:

dCA (p, q) =
n∑

i=1

|pi−qi ||pi |+|qi | , (1)

where n is the length of the vector; p and q are the
vectors to be calculated.

Distance matrix can be seen as N distance vectors.
We sorted them by their average values, and the visu-
alization is shown in Figure 3. Then, K-means29 unsu-
pervised clustering method is used to distance matrix
clustering because the algorithm is simple,has fast con-
vergence and good effect. As for the number of clusters
NC, the obvious aggregation can be seen from Figure 3,
and the range of cluster number can be set between 6
and 14. We perform related ablation experiment for the
number of clusters and the best result can be obtained

when NC is 10, as shown in Figure 4. Cluster centers
CBD are obtained and each center corresponds to a 3D
gray density coding level.

So far, the dictionary model is created and the code-
book is obtained, which includes 3D BD and clustering
centers CBD. Next, codebook is used to code all 3D pul-
monary nodules for 3D feature descriptors.

3.1.2 Coding process and feature
extraction

For a 3D pulmonary nodule of size D × W × H, a sliding
window with a size of (pD × pW × pH) is used to slide on
the nodule. The sliding window is the same size as the
blocks in 3D BD. Stride is set as 1 and zero padding
is used for the edge points. For each sliding window,
we can get a 3D block bp (p means the position of the
slide window in the 3D pulmonary nodule).Finally,a total
of D × W × H blocks are obtained, as the 3D block in
Figure 5.

For the obtained 3D blocks, the distance vector dp is
obtained by calculating the distances between the 3D
block with blocks in 3D BD of codebook. Then, obtained
distance vector is compared with the CBD in codebook.
The 3D gray density coding level Lbp

of the 3D block is
the label of the clustering center in CBD corresponding
to the minimum distance with dp. In particular, if the cen-
ter point (position of the block) of the 3D block is the
background area, the distance matrix is not required.
The 3D gray density coding level Lbp

is set −1. The
gray density coding level of each position of the 3D pul-
monary nodule is obtained to form a 3D pulmonary nod-
ule feature descriptor, as shown in Figure 6b. The above
process is shown in Equations (2) and (3):

dp =
[

dCA
(
bp, bm

)
for bm in BD

]
(2)

Lbp
= Label

(
argmin
n = 1∼10

dCA
(
dp, CBDn

))
(3)

where p means the position of the block in the 3D pul-
monary nodule; n means the number of clusters.
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F IGURE 4 Visualization of ablation experiments about cluster number

F IGURE 5 Coding, feature extraction, and classification schematics of the proposed method

At last, we statistics the number of different gray den-
sity coding levels to get the final 3D GDC feature. The
results are shown as Figure 6.

3.2 Geometric features

3D GDC feature can represent the distribution of dif-
ferent gray density levels of pulmonary nodules, but
it cannot reflect the geometric information related to

3D pulmonary nodules (such as size, volume, longest
diameter, and shortest diameter), which have a strong
correlation with the benign and malignant of pulmonary
nodules. So, some geometric features of 3D pulmonary
nodules are extracted, which are depth, width, height,
longest diameter, and shortest diameter. These features
will be concatenated with 3D GDC feature for benign–
malignant pulmonary nodule classification. Figure 7
shows the visualization results of geometric features of
some typical pulmonary nodules on LIDC-IDRI dataset.
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F IGURE 6 Visualization of the intermediate results of the 3D GDC feature extraction process of typical pulmonary nodules on LIDC-IDRI.
(a) The 3D pulmonary nodule; (b) the 3D feature descriptor of nodule; (c) the 3D gray density coding level of the middle layers in the 3D
pulmonary nodule; (d) the 3D gray density coding feature (3D GDC); (e) the benign and malignant label of 3D pulmonary nodule

F IGURE 7 Visualization of geometric features of typical pulmonary nodules. The first row is the 3D pulmonary nodule. The second row is
the visualization of geometric features. (a,b) Benign pulmonary nodules; (c,d) malignant pulmonary nodules

3D GDC feature and geometric features are concate-
nated for classification of benign and malignant pul-
monary nodules on LIDC-IDRI dataset.

3.3 Random forest

Random forest30 is a classifier that uses multiple trees to
train and test samples. The advantages of the algorithm
are fast learning speed, good robustness, simple struc-
ture, and good effect. In this paper, the extracted fusion
feature is used as input to train random forest for benign
and malignant classification of pulmonary nodules.

4 EXPERIMENTS AND RESULTS

4.1 Dataset

We verified the effectiveness of the proposed method
on public LIDC-IDRI dataset and private ZSHD dataset,

respectively. Details of the two datasets are described
as follows:

LIDC-IDRI was created by seven academic centers
and eight medical imaging companies, which contains
1018 cases. Each subject includes images from a clin-
ical thoracic CT scan and an associated XML file
that records the results of a two-phase image anno-
tation process performed by four experienced thoracic
radiologists.31

Referring to the lung nodule list of Reeves et al.,32

combined with XML annotation files,this paper extracted
the pulmonary nodules, which were labeled by at least
three radiologists. The size of these pulmonary nodules
ranged from 3 to 30 mm and all of them were marked
with characteristics. Pulmonary nodules were classified
into five groups according to risk classification. We set
pulmonary nodules with risk of 1,2 as benign,and those
with risk of 4, 5 as malignant. The numbers of benign
and malignant pulmonary nodules are 388 and 391. We
randomly divided the data into 5-equipartition for five-
fold cross validation. The ratio of the training set to the
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F IGURE 8 Display of 3D pulmonary nodules. (a,c) Visualization of 3D pulmonary nodules from LIDC-IDRI and ZSHD datasets,
respectively; (b,d) the middle layers in the corresponding 3D pulmonary nodules; (e) the benign and malignant label of 3D pulmonary nodule

TABLE 2 Summary of the number of extracted pulmonary
nodules in LIDC-IDRI. (1, 2 benign; 4, 5 malignant)

Benign Malignancy Total

Train 308 312 620

Test 80 79 159

Total 388 391 779

TABLE 3 Summary of the number of different categories of
pulmonary nodules in ZSHD

Benign Malignancy Total

Train 70 118 188

Test 19 31 50

Total 89 149 238

test set is 4:1. Table 2 summarizes the number of differ-
ent categories of extracted pulmonary nodules in LIDC-
IDRI.

The private ZSHD dataset is provided by the Zhong-
shan hospital in Shanghai with pathologic reports. It
contains CT scans from 203 patients which consist
of 238 3D pulmonary nodules with 89 benign nodules
and 149 malignant nodules. The slice thickness of
CT images varies from 0.625 to 5 mm and most of
them are 1 mm. The diameters of the nodules are
3–30 mm. We randomly divided the dataset into training
set and test set at a 4:1 ratio. Table 3 summarizes the

number of different categories of pulmonary nodules in
ZSHD.

We rescaled the pulmonary nodules to 1 mm ×

0.5 mm × 0.5 mm for LIDC-IDRI and ZSHD. Figure 8
shows the display of 3D pulmonary nodules from LIDC-
IDRI and ZSHD datasets.

4.2 Evaluation

The metrics employed to quantitatively evaluate
classification are accuracy, AUC, and sensitivity.
AUC (area under roc curve) is a standard indica-
tor to measure the classification model. Accuracy
represents the classification results, as shown in
Equation (4):

Accuracy =
TN+TP

N+P
(4)

The sensitivity measures the classifier’s ability to iden-
tify positive samples:

Sensitivity =
TP

FN+TP
(5)

where TN represents true negative, TP represents true
positive,FN represents false negative,N represents neg-
ative, and P represents positive.
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TABLE 4 Ablation experimental results on the number and size
of 3D blocks in 3D BD based on ZSHD

Scheme Acc (%) AUC (%) Sen (%)

(3 × 5 × 5)1600 90.0 93.15 93.54

(3 × 7 × 7)1600 90.0 93.68 93.54

(3 × 9 × 9)1600 84.0 91.34 80.64

12003×5×5 84.0 90.1 93.87

20003×5×5 86.0 91.68 80.64

(3 × 5 × 5)1600 represents the size of 3D blocks is 3 × 5 × 5 and the number of
blocks is 1600.
Abbreviations: Acc, accuracy; AUC, area under curve; Sen, sensitivity.

TABLE 5 Ablation experimental results on different features on
LIDC-IDRI

Characteristics Acc (%) AUC (%) Sen (%)

3D GDC 88.28 ± 2.13 94.52 ± 2.35 86.10 ± 3.22

3D GDC + GFs 93.17 ± 1.94 97.53 ± 1.62 90.38 ± 2.18

Abbreviations: Acc, accuracy; AUC, area under curve; Sen, sensitivity.

4.3 Ablation experiment

3D block database (BD) is the most important part
of extracting 3D GDC feature. The number of 3D BD
and size of 3D blocks will determine the effect of fea-
ture expression. We performed ablation experiments, as
shown in Table 4.

For the size of block, Table 4 indicates that 3 × 5 × 5
and 3 × 7 × 7 can achieve almost the same effect, but
larger block size (3 × 9 × 9)1600 tends to get lower effect.
In order to reduce the computing time, we choose 3 ×
5 × 5 as the block size in this paper. As for the number
of blocks, the best classification result can be obtained
when the number is set as 1600.

Ablation experiment was also performed to verify
the effectiveness of 3D GDC feature and geometrical
features (GFs) on LIDC-IDRI dataset. The results are
shown in Table 5.

Table 5 shows that average accuracy can reach to
88.28% by using only 3D GDC feature, while AUC, sen-
sitivity of 94.52% and 86.10% are reasonable, respec-
tively. By fusing 3D GDC feature and GFs (p < 0.05),
the average accuracy, AUC, and sensitivity of 93.17%,
97.53%, and 90.38% are achieved. The best results of
the three indicators showed the effectiveness of the
fusion feature extracted.

4.4 Results on LIDC-IDRI

For LIDC-IDRI dataset, we compared with some excel-
lent methods. References 23,26 are based on the simple
3D CNN, and the authors in 24 use 3D CNN to extract
multi-crop fusion feature for classification. The authors
in 28 fuse the feature extracted by 3D CNN and other

TABLE 6 Results of benign and malignant classification on
LIDC-IDRI

Methods Acc (%) AUC (%) Sen (%)

Wang et al.26 86.79 93.78 84.81

Yan et al.23 87.4 94.7 89.4

Shen et al.24 87.18 92.45 90.10

Ren et al.27 90.0 – 81.0

Tong et al.28 90.65 – 87.50

Al-Shabi et al.20 92.81 96.37 92.36

Ours 93.17 ± 1.94 97.53 ± 1.62 90.38 ± 2.18

Abbreviation: Acc, accuracy; AUC, area under curve; Sen, sensitivity.
Best in bold.

F IGURE 9 ROC of experiment results on LIDC-IDRI testing data

clinical information features, and finally classify the pul-
monary nodules by SVM. The authors in 27 employ 3D
CNN to combine manifold learning regularization. Ref-
erence 20 is based on 3D axial-attention (self attention).
Table 6 summarizes the experimental results.

Table 6 shows that the proposed method has a better
effect than other state-of -the-art 3D CNN methods. We
can achieve average 93.17% for accuracy, 97.53% for
AUC, and 90.38% for sensitivity. Although sensitivity is
1.98% lower than in reference 20, the proposed method
can obtain better accuracy and AUC.Figure 9 shows the
ROC of classification results on LIDC-IDRI dataset.

4.5 Results on ZSHD

For ZSHD dataset, we compared with three excellent
methods, including Zheng et al.,16 Shen et al.,24 and
Wang et al.26 Among them, we converted the 2D net-
work STM-Net proposed by Zheng et al.16 into 3D for
experiment. The experimental results of Shen et al.24

and Wang et al.26 were reproduced by us. Table 7 sum-
marized the experimental results.

Table 7 indicates that the proposed method has a
better effect than other methods. Compared with the

 24734209, 2021, 12, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.15298 by E

ast C
hina U

ni O
f Sci &

 T
ech, W

iley O
nline L

ibrary on [21/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



7834 A NOVEL 3D GRAY DENSITY CODING FEATURE

TABLE 7 Results of benign and malignant classification on
ZSHD

Methods Acc (%) AUC (%) Sen (%) p-value

Zheng et al.16 84.0 89.31 87.10 1.7 × 10−6

Shen et al.24 82.0 86.39 80.65 4.3 × 10−5

Wang et al.26 86.0 88.79 87.10 3.7 × 10−8

Ours 90.0 93.15 93.54

Best in bold.
Abbreviation: Acc, accuracy; AUC, area under curve; Sen, sensitivity.

other three methods, our method has the most satisfac-
tory accuracy, AUC, and sensitivity. Experimental results
proved that the method we proposed can better assist
the doctor in the classification of benign and malignant
pulmonary nodules, and the p-values are smaller than
0.01, which means that the proposed method is signifi-
cantly different from other methods.

5 DISCUSSION

This paper proposes a novel 3D GDC feature for
benign–malignant pulmonary nodule classification on
chest CT. 3D GDC feature is fused with geometric fea-
tures (GFs) of pulmonary nodules for fusion feature.
Then the random forest is used for classification.

The proposed 3D GDC feature can characterize
the distribution of different gray density levels in pul-
monary nodules, which is meaningful to classification
of benign and malignant. First, in order to extract 3D
GDC feature, a dictionary model is created to obtain
codebook including 3D BD and clustering centers CBD.
3D BD is acquired by randomly selected same number
of certain size 3D blocks from benign and malignant
pulmonary nodules of training data. Then, the distance
matrix is calculated between every two blocks, and it is
clustered by K-means to get CBD.The clustering centers
represent different gray density coding levels. Next, the
gray density descriptor is obtained by encoding each
location of the 3D pulmonary nodule. The 3D GDC
feature can be obtained by applying histogram statis-
tics. Figure 10 shows some visual results in 3D GDC
extraction. In benign pulmonary nodules, the proportion
of low-grade gray density (light color) in 3D GDC fea-
tures of pulmonary nodules is higher.While in malignant
pulmonary nodules, the proportion of high-grade gray
density (dark color) is higher. It illustrates that the 3D
GDC features have significant distinction property for
benign and malignant classification and significant
interpretability.For the LIDC-IDRI dataset, using only 3D
GDC features, the average accuracy of the proposed
method in fivefold cross validation reaches to 88.28%,
AUC is 94.52%, and sensitivity is 86.10%. This fully
reflects the effectiveness of 3D GDC feature.

Although 3D GDC feature can well characterize the
gray density distribution of pulmonary nodules, it cannot
characterize the geometric features such as the size and
volume, which are correlated with the benign and malig-
nant. In this paper,geometric features of pulmonary nod-
ules are extracted, including the length, width, height,
longest diameter, and shortest diameter. Then, the 3D
GDC feature and GFs are fused for benign and malig-
nant classification.Compared with using 3D GDC alone,
the average accuracy,AUC and sensitivity are increased
(p < 0.05) by 4.89%, 3.01%, and 4.28%, respectively.
It shows that the extracted GFs features of pulmonary
nodules are effective.

As shown in Table 6, compared with other state-
of -the-art 3D CNN methods, the proposed method
achieves more satisfactory results. Compared to simple
3D CNN,23,26 the accuracy, AUC, and sensitivity of our
method are increased more than 5.77%, 2.83%, and
0.98%, respectively. Compared to multi-crop fusion 3D
CNN feature,24 significant improvements are obtained.
Farther, compared to fusion features of 3D CNN and
Clinical Information,28 the improvements of 2.52%
for accuracy and 2.88% for sensitivity are achieved.
As for 3D axial-attention,22 although sensitivity was
1.98% lower, the proposed method can get remarkable
higher accuracy and AUC. Moreover, the proposed 3D
GDC features and geometric features are more inter-
pretable than the 3D CNN method, which can provide
more meaningful auxiliary diagnostic information for
doctors.

6 CONCLUSION

This paper proposes a novel 3D GDC feature, which is
fused with extracted geometric features for classification
of benign and malignant pulmonary nodules. Random
forest classifier is used. 3D GDC feature can charac-
terize the distribution of different gray density levels in
pulmonary nodules. The proportion of low-grade gray
density of benign pulmonary nodules is higher, while for
malignant pulmonary, the proportion of high-grade gray
density is higher. It represents that 3D GDC feature has
satisfactory discrimination and strong interpretability for
classification of benign and malignant pulmonary nod-
ules. Geometric features of 3D pulmonary nodules are
extracted to fuse with 3D GDC, which are meaningful
and explainable for the benign and malignant of pul-
monary nodules.The experimental results verify the pro-
posed method. In public dataset LIDC-IDRI, 93.17% for
accuracy,97.53% for AUC,and 90.38% for sensitivity are
obtained. Compared with the state-of -the-art 3D CNN
methods, the proposed method not only achieves more
satisfactory results, but also has better interpretability.
For ZSHD, combined with 3D GDC feature and GFs, the
proposed method achieved 90% for accuracy, 93.15%
for AUC, and 93.54% for sensitivity, which are higher
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F IGURE 10 Visualization of the intermediate results of the 3D GDC feature extraction process of LIDC-IDRI dataset. (a) The 3D
pulmonary nodules; (b) the middle layers in the corresponding 3D pulmonary nodules; (c) the gray density feature descriptors of nodules; (d) the
3D gray density coding level of the middle layers corresponding to (b); (e) the of 3D GDC features; (f) the benign and malignant label of 3D
pulmonary nodules

than other state-of -the-art methods. The experimental
results show that our method can provide doctors aux-
iliary analysis in the diagnosis of benign and malignant
pulmonary nodules.
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