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Abstract: Pulmonary nodules risk classification in adenocarcinoma is essential for early detection of lung cancer and clinical
treatment decision. Improving the level of early diagnosis and the identification of small lung adenocarcinoma has been always
an important topic for imaging studies. In this study, the authors propose a deep convolutional neural network (CNN) with scale-
transfer module (STM) and incorporate multi-feature fusion operation, named STM-Net. This network can amplify small targets
and adapt to different resolution images. The evaluation data were obtained from the computed tomography (CT) database
provided by Zhongshan Hospital Fudan University (ZSDB). All data have a pathological label and their lung adenocarcinomas
risk are classified into four categories: atypical adenomatous hyperplasia, adenocarcinoma in situ, minimally invasive
adenocarcinoma, and invasive adenocarcinoma. The authors’ deep learning network STM-Net was trained and tested for the
risk stage prediction. The accuracy and the average area under the receiver operating characteristic curve achieved by their
method are 95.455% and 0.987 for the ZSDB dataset. The experimental results show that STM-Net largely boosts classification
accuracy on the pulmonary nodules classification compared with state-of-the-art approaches. The proposed method will be an
effective auxiliary to help physicians diagnosis pulmonary nodules risk classification in adenocarcinoma in early-stage.

1 Introduction
Lung cancer is the most malignant tumour with great prevalence in
many countries all over the world [1]. As early lung cancer usually
presents as asymptomatic pulmonary nodules, and the current
diagnosis and treatment level is difficult to make a timely and
accurate diagnosis of the pulmonary nodule, many patients are
already in the advanced stage of lung cancer at the time of
diagnosis which greatly reduces their survival. Therefore, it is
important to improve lung cancer detection and diagnosis in the
early stage. In the clinical medical field, ground glass opacity and
ground glass nodules (GGNs) appear as tiny turbid areas in
computed tomography (CT) images [2]. For such small nodules,
screening for lung cancer with low-dose CT promotes the detection
and diagnosis of the early stage of lung cancer, especially
adenocarcinoma to a certain extent [3].

For doctors, screening pulmonary nodule from substantial CT
images is a tedious and subjective task, which can easily lead to
misdiagnosis and missed diagnosis, so using computer-aided
diagnosis (CAD) [4] technology is especially important. The
meaning of CAD includes two aspects, CADe (Computer-Aided
Detection) and CADx (Computer-Aided Diagnosis). The main
function of the former is to assist the radiologist to recognise and
detect lung cancer, and the latter is to assist the radiologist to
analyse benign or malignant of the detected lung lesions.

The main workflow of the CAD system for lung cancer
includes pulmonary nodule segmentation, feature extraction and
classification. Our main task is pulmonary nodules classification
and identification. It is significant to learn the CAD system
pulmonary nodule classification algorithm, which can effectively

analyse the characteristics of the tumour such as benign and
malignant judgment and better to assist the doctor or radiologist in
the diagnosis.

In the past several years, many studies on the pulmonary nodule
classification are based on the benign and malignant two-
classification algorithm [5–11]. In fact, lung cancer generally has a
long growth process of substitution, migration, evolution and
transformation, so pulmonary nodule can be classified more
detailed. According to the update from IASCL and summary of
Travis et al. [12] and Zheng et al. [13], since 2011, lung cancer has
a new international risk classification standard, the GGNs ≤ 30 mm
are divided into four categories: (i) atypical adenomatous
hyperplasia (AAH), (ii) adenocarcinoma in situ (AIS), (iii)
minimally invasive adenocarcinoma (MIA), (iv) invasive
adenocarcinoma (IAC). Among them, AAH is a benign nodule,
while the other three are malignant nodules, and the malignancy
risk degree increases in the order of classification.

At present, the algorithms for pulmonary nodule classification
and recognition are mainly divided into traditional radiomics
methods and deep learning (DL) methods [14, 15]. The traditional
radiomics use image composite features combined with classifiers
for classification and recognition [8]. Cornell University's Reeves
et al. [9] utilised a 46-dimensional 3D feature which including
pulmonary nodule morphology, density, surface curvature and edge
gradient, and used SVM, K-nearest Neighbours and logistic
regression to classify benign and malignant pulmonary nodules on
International Early Lung Cancer Action Program and National
Lung Screening Trail datasets. The results show that nearly 70% of
the classification accuracy was achieved with optimal parameters.
However, the non-uniform distribution of pulmonary nodule size in
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datasets also affects the classification accuracy. Li et al. [10]
applied an improved semi-supervised FCM clustering algorithm to
cluster 11 features including grey variance, boundary roughness
and moment invariant, and accuracy reached 77.6% on the Lung
Image Database Consortium (LIDC) and Image Database Resource
Initiative (IDRI) dataset. Alahmari et al. [11] combined delta
radiomics with conventional (non-delta) features, using machine
learning to classify the benign and malignant pulmonary nodules,
found the best improved average area under the receiver operating
characteristic curve (AUC) was 0.822 when delta features were
similar with conventional features versus an AUC 0.773 for
conventional features only. In the previous study, we proposed a
method for calculating the grey density distribution characteristics,
and classified the nodules into four categories (AAH, AIS, MIA,
IAC) in Zhongshan Hospital Fudan University (ZSDB) dataset, the
overall classification accuracy reached 89.2% [16]. After that, we
also proposed a new exponential function to weight the angular
histogram for each component of the distribution map [17]. The
accuracy was increased to 90.8%.

However, traditional methods have several limitations. First, the
diversity of the pulmonary nodule causes poor robustness of
traditional methods. Secondly, the hand-defined features often fail
to fully reflect the target information. These factors affect the final
classification and recognition performance. In order to address
these problems, previous work has concentrated on applying DL
model to pulmonary nodules classification and recognition. DL
model simulates the form of human brain neurons to transmit
information for self-learning and training, and thus it has become
very effective in the field of image and video in recent years [14,
15]. DL also plays an important role in biomedicine domain, such
as U-Net [18], 3D-Unet [19], HIC-Net [20] and Agile-CNN [21].

Setio et al. [22] designed a pulmonary nodule depth-assisted
diagnosis network, which used multi-view to reduce false positive
rate. This method was validated on 888-frame LIDC-IDRI dataset,
achieving 85.4% sensitivity with 1FPs/scan false positive rate and
90.1% sensitivity with 4FPs/scan false positive rate; Shen et al.
[23] used multi-crop convolutional neural network to classify
suspected malignant pulmonary nodules, dividing the nodules into
benign nodules and malignant nodules. The experiment also tested
on LIDC-IDRI dataset, and the accuracy of the classification
reached 87.14%, and AUC of the ROC curve reached 0.93; Dai et
al. [24] proposed a new 3D network ALNC-3D, which combined
pulmonary nodule benign–malignant classification and pulmonary
nodule image attributes classification to improve the accuracy of
pulmonary nodule classification, and obtained 91.47%
classification accuracy on LIDC-IDRI dataset; Zhao et al. [25]
proposed a new network DenseSharp, which classified their own
dataset HHDB (from Huadong Hospital Affiliated to Fudan
University) into three categories (AAH-AIS, MIA, IAC) in the
form of 3D maps and the accuracy reached 64.1% on the dataset
collected by themselves.

For lung adenocarcinomas risk classification, the most
difficulties are the representation of small nodules features. The
idea of multi-scale module fusion is effective in CNNs for image
super-resolution [26], semantic segmentation [27] and object
detection [28]. In this paper, we propose a DL algorithm based on
scale-transferrable. The algorithm applies the scale-transfer module
(STM) to the classification networks, and incorporates with multi-
feature fusion algorithm. It can solve the scale diversification of the
pulmonary nodule CT images and the classification of the small
nodule target problems, and has achieved remarkable performance
in the classification strategy according to IASCL and Travis et al.
[12] and Zheng et al. [13].

The contributions of this paper are as follows: (a) we propose a
new deep CNN network (STM-Net) which incorporates STM and
multi-feature fusion algorithm to design a variable-scale DL
method; (b) STM-Net can amplify the features of the small targets
clearly without adding any parameters or inserting 0 when up-
sampling. (c) STM-Net has an advanced pulmonary nodule risk
classification performance on ZSDB dataset, which reaches more
than 95% accuracy for four-classification and 0.987 AUC value of
(AAH, AIS, MIA and IAC). (d) We also visualise and analyse the
feature distribution of pulmonary nodules from the output of the
network middle layer.

The rest of this paper is organised as follows. In Section 2, we
introduce ZSDB dataset and our network architecture. Section 3
introduces the implementation details of experiments, evaluates
experimental results and compares to the other two networks. The
discussion and conclusion of this paper are given in Sections 4 and
5, respectively.

2 Methods and materials
2.1 Network

Due to the nodule size in the segmented pulmonary nodule picture
being small, we incorporate the STM and multi-feature algorithm
to design the STM-Net. The overall network architecture of STM-
Net can be seen in Fig. 1a. 

As seen in Fig. 1a, we first input 48 × 48 × 1 segmented
pulmonary nodule images into four convolution layers and four
pooling layers, the kernel size of these four convolution layers is
3 × 3 and stride is 1, and four pooling layers use the 2 × 2  max-
pooling with stride 2. After that, we obtain four sets of feature
maps with different sizes. Then we use max-pooling to obtain the
low-level feature map with large receptive field and use STM to
obtain the deep feature map with high-level semantic information,
which also can make all feature maps to the same size. Thirdly,
these same size feature maps through a transition layer which can
uniform channel dimension of each feature group. The transition
layer consists of 1 × 1 convolution layer and 2 × 2 average pooling
layer. After the transition layer, we have the four groups feature
map with the same channel size, then we use channel-fusion to

Fig. 1  Architecture of STM-Net
(a) STM-Net: Conv denotes Convolution, MP denotes Max Pooling, AP denotes Average Pooling, BN denotes Batch Normalisation, and GAP denotes Global Average Pooling. The
red bold mark is the STM. In this figure, we use an MIA sample as the example, (b) Detail design of STM
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concatenate these feature maps. Then outputs are put in the linear
layer which includes batch normalisation operation, ReLU and
global average pooling. Finally, through softmax classifier to
obtain recognition results.

In this network, the input feature map size of the transition layer
is 6 × 6, and the STM with up-sampling factor 2 is applied to the
fourth convolution layer. After the STM, the feature map size is
changed from 3 × 3 × 192 to 6 × 6 × 48. Then through the
transition layer, the feature map becomes 3 × 3 × 12, and finally
fuses into 3 × 3 × 48. The specific implementation details of our
convolutional network are shown in Table 1. 

Fig. 1b shows the STM, which is the key to achieve multi-
feature fusion. Assume that the input of the upper layer is
H × W × C ⋅ r2, where r is the up-sampling factor. When
performing up-sampling, the number of channels is equally divided
into C parts, each part has r2 channels. Feature maps in one part are
mapped into a new feature map, the elements in original feature
maps were rearranged periodically along channels. The output
tensor of the STM is rH × rW × C. In contrast with traditional up-
sampling and deconvolution, the STM is a more effective up-
sampling operation, because the scale-transfer operation achieves
up-sampling by compressing the number of channels to expand
width and height, there are no additional noise points and
parameters. And comparing with upscale methods [29, 30] which
need convolution with a stride 1 in large-scale feature maps, STM
can implement up-sampling without train.

Therefore, the STM is r2 time faster than the methods up-
sampling before convolution. The principle of STM can be
summary as (1)

Ixr, yr, c
LS = Ix, y, c ⋅ r2

SS (1)

where ILS is the large-scale feature maps, and ISS is the small-scale
feature maps. The channel number of ISS must satisfy an integer
multiple of r2. After STM, every four pixels share the same
receptive fields. So the features get enhanced, especially for the
small nodules since the STM can amplify small target features.

2.2 Dataset

We evaluate our approach on a lung CT image dataset – ZSDB
which is provided by the cooperative grade-A tertiary hospital –
Zhongshan hospital, Fudan University.

ZSDB dataset: Considering the diversity of pulmonary nodules,
researchers try to create a new targeted dataset to illustrate the
universality and robustness of classification methods. The Medical
Image Processing Laboratory of East China University of Science
and Technology used the rich materials provided by the
cooperative grade-A tertiary hospital to establish a large-scale lung
CT image dataset – ZSDB. The dataset has 1971 samples,
including pulmonary nodules with the diameter ≤ 32 mm, and all
nodules were labelled based on pathological diagnosis, which are
more accurate. According to IASLC criteria, pulmonary nodules
are classified into four categories (AAH, AIS, MIA and IAC). The
imaging parameters of the ZSDB dataset are as follows: electric
parameters are 500 mA, 120 kV, the image size is 512 × 512, the
image type is normal CT, the chest image pixel distribution density
is 0.703125 mm, and the single sheet thickness is 0.625 mm. The
LIDC-IDRI dataset is a combination of incidentally found or
screening cohort, and the scan condition is not limited by the 1 mm
thickness. In our study, we mainly focus on establishing a DL
model designed for assisting current screening project. So we
collect the cases from a local CT screening program, and collect
the CT scan with the thickness lower than 1 mm.

2.3 Dataset pretreatment

The original image on ZSDB dataset is untrainable for the
classification task, pulmonary nodule part must be segmented out
as input data for training. ZSDB dataset has physician-labelled
auxiliary documentation for us to segment the nodule section
conveniently. However, simply extracting the nodule area is not
enough for classification because there are numerous impurities
and noise that affect the classification effect. Therefore, the lung
parenchyma segmentation is an important pre-treatment work
before the pulmonary nodule classification.

There are many effective methods for lung parenchyma
segmentation, such as grey segmentation including threshold
method [31], region growing method [32], clustering method [33]
and random field method [34] boundary segmentation including
Sobel operator model and Prewitt operator model, active contour
model segmentation including Snake model [35]. In this paper, we
use the KMEANS unsupervised clustering algorithm to distinguish
the pixel-level grey in different regions of lung CT images [16],
retain pixel values of the nodule and clear redundant pixel values
of other parts, the lung parenchyma segmentation results are shown
in Fig. 2. 

The number of samples after lung parenchyma segmentation is
as follows: 34 samples of AAH, 312 samples of AIS, 242 samples
of MIA, and 1383 samples of IAC, total 1971 samples. In
experiments, the ratio of training samples and testing samples is
4:1, so the samples number of the training set and test set is 1577
and 394, respectively. And we use the five-fold cross-validation to
train networks, in each fold training samples account for 80% and
validation samples account for 20%. The sample images of ZSDB
dataset after lung parenchymal segmentation and pulmonary
nodule extraction are shown in Fig. 3. 

In addition, because the number of samples on ZSDB dataset is
insufficient and the number imbalance between different classes is
too large. More specifically, the maximum number of IACs is more
than 50 times that of the minimum number of AAHs. Therefore,
we consider use data augmentation to assist in training. The data
augmentation methods used in this paper include: (a) random rotate
image of 0–15° clockwise or counter-clockwise; (b) random
translate of 2 pixels in each axis.

2.4 Training

This paper uses Python 3.6 and Tensorflow 1.2 with GPU (1080Ti)
to collate data and train network. The main task is training the
multi-classification of pulmonary nodules in adenocarcinoma on
our own dataset ZSDB. The batch size and epoch in training is set

Table 1 STM-Net architecture. Conv_1–Conv_4 are the
four convolution layers on the upper part of the network.
Conv_1_S–Conv_4_S are the sampling layers of Conv_1–
Conv_4. Conv_1 and Conv_2 use down-sampling, and
Conv_3 uses the identity map. The Conv_4 uses the STM.
TL (1–4) represents the transition layer of Conv_1_S–
Conv_4_S. CL is the concatenating layer, and LL is the linear
layer. The output size of LL represents the final number of
classifications
Layers Output

Size(Input
48 × 48 × 1)

STM-Net

Conv_1 24 × 24 × 24 3 × 3 conv, stride 1; 2 × 2 max pooling,
stride 2;

Conv_2 12 × 12 × 48 3 × 3 conv, stride 1; 2 × 2 max pooling,
stride 2

Conv_3 6 × 6 × 96 3 × 3 conv, stride 1; 2 × 2 max pooling,
stride 2

Conv_4 3 × 3 × 192 3 × 3 conv, stride 1; 2 × 2 max pooling,
stride 2

Conv_1_S 6 × 6 × 24 4 × 4 max pooling, stride 4; BN; ReLU
Conv_2_S 6 × 6 × 48 2 × 2 max pooling, stride 2; BN; ReLU
Conv_3_S 6 × 6 × 96 Identity layer; BN; ReLU
Conv_4_S 6 × 6 × 192 × 2 scale-transfer module; BN; ReLU
TL(1–4) 3 × 3 × 12 1 × 1 conv, stride 1; 2 × 2 avg pooling,

stride 2;
CL 3 × 3 × 48 concatenating; BN; ReLU
LL 4/3 1 × 1, stride 1
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to 64 and 50, respectively. The initial learning rate is set to 0.001
which is divided by 10 at 25th and 40th epoch, and the dropout rate
is set to 0.5 for reducing overfitting. In addition, we use stochastic
gradient descent (SGD) and cross entropy loss [36] to train STM-
Net, the loss function is shown in (2):

lcls = − 1
n ∑

n
∑

c
yclog pc (2)

where n is the number of samples (the batch size in the specific
training), c is the number of class, which is 4 or 3 on ZSDB
dataset. yc represents the distribution of real sample, when samples
belong to the same category, yc = 1; otherwise, yc = 0. pc is the
final output of the network, it represents the predicted classification
probability.

3 Results
3.1 Classification performances

In order to verify the effectiveness of STM-Net, we compare the
classification results with four other networks: 2D-CNN [37],
DenseNet [38], MSP-Net [39] and STM-SVM in Table 2. 2D-CNN
is a basic 2D convolutional network with four convolution layers,

DenseNet has the characteristics of multi-feature fusion, MSP-Net
uses the multi-scale pooling, and STM-SVM uses SVM as
classifier to classify the feature extracted from STM-Net. Due to
the lack of sample data, especially the AAH which only has 34
samples, we carried out experiments on ZSDB dataset with four
different training strategies: (a) the original data as training
samples, divided into four categories (AAH, AIS, MIA and IAC);
(b) data augmentation for AAH samples, AAH is expanded to 4
times, and still divided into four categories; (c) data augmentation
for the other three types of samples except IAC, AAH is expanded
to 20 times, AIS and MIA are expanded to 5 times, divided into
four categories; (d) combining AAH and AIS into one category,
divided into three categories (AAH-AIS, MIA and IAC). The four
training strategies in this paper are abbreviated as ‘Ori.’ ‘DA1’,
‘DA2’, and ‘3c.’ in the later part.

The reason of 3-categories classification is that the AAH
samples with pathology label are too few for fairly training the
deep neural networks. In clinical, the AAH lesions are usually
considered as benign, and they rarely undergo surgical treatment
unless obvious malignant signs are presented in the CT images
[25]. However, fortunately, it is still reasonable in the clinical
context, the two subtypes of AAH and AIS lesions (≤3 cm) are
reported to have a 100% disease-specific survival if they are
completely resected [12]. A 3D DL network DenseSharp was

Fig. 2  Examples of lung parenchymal segmentation
 

Fig. 3  Image samples of ZSDB dataset after lung parenchymal segmentation and pulmonary nodule extraction. The rows show the AAH, AIS, MIA and IAC
image samples respectively. For the convenience, the sample size here is processed in the same size

 

Table 2 Classification accuracy on ZSDB dataset for four training strategies. Ori. is the abbreviation of Original, which
represents training data without data augmentation. DA1 and DA2 are 4-classification with data augmentation. On the DA1
training strategy, AAH is expanded to 4 times. On the DA2, AAH is expanded to 20 times, and AIS and MIA are expanded to 5
times. 3c. represents 3-classifications on experiment, which classify AAH and AIS into one category
Method Ori., % DA1, % DA2, % 3c., %
2D-CNN [37] 88.070 90.171 89.868 91.081
DenseNet [38] 90.657 90.910 90.152 92.545
MSP-Net [39] 92.172 93.687 91.162 95.630
STM-SVM (ours) 92.920 93.950 92.117 95.981
STM-Net (ours) 94.697 95.455 94.444 97.429
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proposed to classify three categories (AAH-AIS, MIA, IAC) on
dataset HHDB (from Huadong Hospital Affiliated to Fudan
University) and the accuracy reached 64.1% [25]. Although the
STM-Net DL method proposed in this paper also get the best
classification accuracy in the 3-categories, it has significant
improvement in 4-categories classification task to satisfy the
demand of auxiliary clinical diagnosis, shown in Table 2.

In Table 2, we can observe the following three points. First, the
classification accuracy of STM-Net is the best in all four training
strategies than 2D-CNN, DenseNet, MSP-Net and STM-SVM,
which achieve 94.697% [95% CI 96.607–92.787%], 95.455%
[95% CI 97.225–93.685%], 94.444% [95% CI 96.394–92.494%]
and 97.429% [95% CI 98.779–96.079%] on Ori., DA1, DA2 and
3c, respectively. Secondly, the classification accuracy of STM-
SVM is better than the DenseNet and MSP-Net, which means the
feature extracted from the STM-Net contains better classification
information of pulmonary nodule. Thirdly, the accuracy results
from the last column show that the (AAH-AIS, MIA, IAC) three
classification (3c.) has the best training performance compared
with other three strategies. However, the overall accuracy of DA2
is slightly lower than Ori., it can be caused by the data
augmentation for the other three categories except for IAC. After
this data augmentation, the classification accuracy of these three
categories increase, while the accuracy of IAC decreases slightly,
and the overall accuracy also shows a downward trend. The
sensitivity and specificity of STM-Net on DA1 strategy are shown
in Table 3. The average sensitivity and specificity of STM-Net
testing on ZSDB dataset for DA1 are 0.952 and 0.983, respectively.
The average sensitivity and specificity are obtained through
multiplying the number of each category by their respective scores,
and then dividing by the total number of samples.

Fig. 4 shows the multi-classification ROC curves and AUC of
the five networks with DA1 training strategies. It can be found that
with the same data augmentation (DA1), the AUC of STM-Net is

higher than other networks. The average AUC of STM-Net on
DA1 is 0.987, while 2D-CNN [37], DenseNet [38], MSP-Net [39]
and STM-SVM are 0.962, 0.970, 0.973 and 0.980, respectively.
The ROC curve of STM-Net is also the best among these five
networks. In particular, the improvement of AAH in STM-Net is
significant, and the AUC of AAH has achieved 0.990 for DA1.

Fig. 5 is the Confusion matrixes of four training strategies using
STM-Net on ZSDB dataset. The confusion matrix, also known as
the error matrix, is a standard format for accuracy evaluation,
where the abscissa is the prediction category and the ordinate is the
real category. The confusion matrix is a good representation of
classification performance. For example, the DA1 in Fig. 5
indicates that 86% of AAH data are classified correctly, and the
remaining 14% are misclassified into MIA. For Ori., we can see
that the classification accuracy of AAH with this training strategy
is relatively low. This is because without data augmentation, the
number of AAH samples is very rare. In comparison, the
classification performance of AAH with data augmentation (DA1
and DA2) is significantly better. Although the overall accuracy of
DA2 is not so satisfactory (see Table 2), the confusion matrix in
Fig. 5 indicates that the classification result of DA2 is more
balanced than the other three training strategies. It is because the
number imbalance between the four samples types of DA2 is the
smallest. In addition, the confusion matrix shows that the confusion
between AIS and MIA is serious. It may prove that the
characteristics of AIS and MIA are relatively close, so the classifier
can misjudge easily when classifying these two types. Overall, the
performance of the three-classifications (3c.) is the best, which can
also be confirmed from Table 2.

Fig. 6 presents some predicted results, which including four
correct predicted results and one incorrect predicted result. The
pulmonary nodule area is in the rectangle, the yellow is the correct
predicted result, and the red is the incorrect predicted result. The
ground truth of these pulmonary nodule images is AAH, AIS,

Table 3 Sensitivity and specificity of STM-Net testing on ZSDB dataset for DA1. Avg. is the abbreviation of average. The
average sensitivity and specificity are calculated by the number of each class and their scores
Class AAH AIS MIA IAC Avg.
sensitivity (with 95% CI) 0.857 (0.887–0.827) 0.952 (0.970–0.934) 0.857 (0.887–0.827) 0.971 (0.985–0.957) 0.952 (0.970–0.934)
specificity (with 95% CI) 0.995 (1.000–0.989) 0.982 (0.993–0.971) 0.991 (0.999–0.983) 0.982 (0.993–0.971) 0.983 (0.994–0.972)

 

Fig. 4  ROC curve of DA1 using 2D-CNN, DenseNet, MSP-Net, STM-SVM and STM-Net on ZSDB dataset
(a) 2D-CNN, (b) DenseNet, (c) MSP-Net, (d) STM-SVM, (e) STM-Net
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MIA, IAC and IAC respectively. The two images in the second row
belong to the same lung, but the second image is the edge area of
this pulmonary nodule, its solid part is very small, so it is
misclassified into AIS.

3.2 Results analysis

The output dimension of the linear layer before softmax is 48 × 1,
and these 48 features are self-learned by the network. For a DL
algorithm, although it is difficult to know what these 48 features
specifically represent, we can analyse the differences and
connections between them by comparing the 48 features among
different categories. As shown in Fig. 7, from top to bottom
correspond to AAH, AIS, MIA and IAC, respectively. The first
image of each row is a partial screenshot from the original CT
image, and the yellow arrow in this image points to the pulmonary
nodule. The second image in each row is a nodule sample taken
from the CT image which after the lung parenchyma segmentation,
and also is the input image of the network. The last is the output
line chart of the linear layer before the softmax layer, which is the
48-dimensional feature mentioned before. From the distribution of
the line chart, we can see that the other three categories except IAC
fluctuate from low to high, while the tendency of IAC is from high
to low. In addition, the peaks of AAH is narrow and high in the
rear of the line chart, while the peaks of AIS move a little bit
forward and relatively flat. The peaks of MIA have the same shift
trend as AIS but distribute in a wider range. Overall, the
distribution of AIS and MIA is relatively close, which confirms the
previous conclusion: AIS and MIA samples are easily confused
and misjudged.

Table 4 shows the different pulmonary nodule classification
methods and their performances, where HHDB is collected by
Zhao et al. [25] cooperate with the Huadong Hospital Affiliated to
Fudan University. Compared with the literature which used the
same ZSDB dataset [17], the performance of this paper is
obviously more impressive, and our classification accuracy is about
4.5% higher than [17].

4 Discussion
Early detection of lung cancer increases the chances of patients’
survival, which increases the motivation in developing accurate
and fast diagnostic tools to detect lung cancer earlier. Automated
classification and recognition of pulmonary nodule can effectively
assist physicians in the diagnosis and analysis of disease. We
design an end-to-end DL CNN network STM-Net with STM to
classify GGNs to (AAH, AIS, MIA and IAC) in ZSDB dataset
according to the update from IASCL and Travis et al. [12] and
Zheng et al. [13].

Radiomics and DL methods are usually established to calculate
different kinds of features to predict clinical cancer status. There
are lots of work to screen pulmonary nodule into binary categories
as benign and malignancy [9–11, 22–24]. For instance, Jacobs et
al. [40] proposed a 128-dimensional radiomics feature for semi-
substantial nodules, and verified it on NLST dataset, which
achieved 80% classification accuracy. More recently, Li et al. [41]
effectively fusion the intensity, geometric and texture features,
rotation invariant uniform local binary pattern and Gabor filter
methods to generate valid eigenvectors, then used the random
forest method to modify the eigenvectors to classify benign and

Fig. 5  Confusion matrixes of four training strategies using STM-Net on ZSDB dataset. Confusion matrixes of four training strategies using STM-Net on
ZSDB dataset. Ori. represents training data without data augmentation. DA1 and DA2 are 4-classification with data augmentation strategy. For DA1 training
strategy, AAH is expanded to 4 times. For DA2, AAH is expanded to 20 times, and AIS and MIA are expanded to 5 times. 3c. represents 3-classifications on
experiment, which classify AAH and AIS into one category

 

Fig. 6  Examples of the predicted classification results on ZSDB dataset
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malignant nodules and achieved 0.92 sensitivity results on LIDC-
IDRI dataset. For DL methods, such as multi-scale CNN model
[23], advanced DenseNet [42] and 3D DCNN models [24], are also
developed to classify benign and malignant nodules.

However, the four categories standard (AAH, AIS, MIA and
IAC) of lung cancer are rarely discussed with radiomics and DL
methods. In our previous work, the proposed characteristics of grey
density distribution with exponential weighted angular histogram
classified the nodules into four categories (AAH, AIS, MIA and
IAC) in ZSDB dataset and get an accuracy of 90.8% [17]. This,

however, still depends on hand-craft feature engineering. In this
paper, we designed a new CNN for this task. Since the size of
pulmonary nodules is usually small, the features are not easy to
detect, which makes the classification task become difficult. We
propose the pulmonary nodule classification network STM-Net
which incorporate STM and scale fusion to achieve the multi-
classification task. The mechanism of STM increases the inception
field of convolution layer output and effectively amplifies small
target features. The proposed DL model STM-Net achieves
95.455% accuracy with proper data augmentation. Compared with
other popular used DL models, such as 2D-CNN [37], DenseNet
[38], multi-scale pooling [39], the STM-Net significantly increases
the classification accuracy of small pulmonary nodules.

Although it is still a black-box of the internal mechanism of
DL, we try to further analyse the features learned from our DL
network. The linear layer output with 48-dimensional features was
discussed in Fig. 7. Obviously, the distribution of learned features
can characterise different categories effectively. This is a useful
hint for future research about how to combine DL and radiomics to
achieve better results.

Additionally, the majority of collected patients’ pulmonary
nodule samples are malignant, which lead to the number imbalance
in different categories on ZSDB dataset. More specifically, AAH

Fig. 7  Examples of the linear layer features of STM-Net. The first column is the original CT screenshot, and the yellow arrow points to the pulmonary nodule.
The second column is the nodule sample after lung parenchyma segmentation, which is also used for network training. The third column is the output line
chart of the linear layer before softmax. The output dimension of the linear layer is 48 × 1, corresponding to 48 points in the line chart

 
Table 4 Different classification methods and their
classification performances
Methods Datasets Performance
DenseSharp [25] HHDB accuracy is 64.1% for 3-classification

task (AAH + AIS,MIA,IAC).
angular density
feature [17]

ZSDB accuracy is increased to 90.8%
compared to the above.

STM-Net(ours) ZSDB accuracy reaches 95.455% for 4-
classification and 97.429% for 3-

classification.
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patients are healthier than other patients and they do not need
surgical treatment, which causes a serious lack of AAH data with
pathology. By contrast, the number of IAC data on ZSDB dataset is
the most. Therefore, we use data augmentation to address this
problem of insufficient data, and the experimental results show that
data augmentation is indispensable. However, only relying on data
augmentation to expand the number of data can be temporary,
because data augmentation only expands the original data and keep
the same distribution of it. However, the characteristics of
pulmonary nodules are very complex, the rare samples of AAH
cannot fully present the distribution of AAH features. Therefore, in
order to achieve more reliable and favourable performance, we still
need to collect more train samples in the following works. In
clinical, there is some work to combine radiomics analysis with
genomic variation [43, 44], relapse of the disease [45], and post-
treatment progression-free survival [7].

Although resection of pulmonary nodules is the ideal and
reliable way for diagnosis, there is a crucial need for developing
non-invasive diagnostic CADs to eliminate the risks associated
with the surgical procedure. It is increasingly important to achieve
pulmonary nodules detection and segmentation automatically as
well as classification. The current aim of combination of the DL
method and oncogene variation detection is to increase diagnostic
accuracy. We will also focus on the optimisation of DL network
with radiomics and genomics, and realise an end-to-end CAD
system to help lung cancer screening and auxiliary diagnosis. It is
significant to support doctors making clinical decisions for lung
cancer patients and increasing their survival rate when detecting
early-stage lung cancer.

5 Conclusion
In this paper, we proposed a new pulmonary nodule risk
classification network, STM-Net. This network incorporates STM
and multi-feature fusion to achieve pulmonary nodule
classification. The input pulmonary nodule images first pass
through four convolution and pooling layers to extract the four
different size features. Then using max-pooling and STM to unify
the size of feature maps, and through the transition, layer to unify
the channel size of these four groups of feature map. After that, we
use channel fusion to combine different semantic level features and
achieve final classification. Experimental results show that our
proposed network can achieve more effective classification
performance on ZSDB dataset, the accuracy and the AUC are
95.455% and 0.987, respectively.

However, the pulmonary nodule classification is only a part of
the CAD system. Therefore, in the subsequent research, we will try
to integrate pulmonary nodule segmentation and feature extraction
to achieve end-to-end CAD system to help lung cancer screening
and auxiliary diagnosis.
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