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Abstract: 4D millimeter wave (mmWave) imaging radar is a new type of vehicle sensor technology
that is critical to autonomous driving systems due to its lower cost and robustness in complex weather.
However, the sparseness and noise of point clouds are still the main problems restricting the practical
application of 4D imaging radar. In this paper, we introduce SMIFormer, a multi-view feature fusion
network framework based on 4D radar single-modal input. SMIFormer decouples the 3D point
cloud scene into 3 independent but interrelated perspectives, including bird’s-eye view (BEV), front
view (FV), and side view (SV), thereby better modeling the entire 3D scene and overcoming the
shortcomings of insufficient feature representation capabilities under single-view built from extremely
sparse point clouds. For multi-view features, we proposed multi-view feature interaction (MVI)
to exploit the inner relationship between different views by integrating features from intra-view
interaction and cross-view interaction. We evaluated the proposed SMIFormer on the View-of-Delft
(VoD) dataset. The mAP of our method reached 48.77 and 71.13 in the fully annotated area and the
driving corridor area, respectively. This shows that 4D radar has great development potential in the
field of 3D object detection.

Keywords: 4D imaging radar; point cloud; 3D object detection; voxel feature decoupling; multi-view
feature interaction; deep learning; autonomous driving

1. Introduction

The conventional automotive radar has been widely used in advanced driver assis-
tance systems (ADAS) and autonomous driving [1], but it faces limitations such as the
absence of elevation information and low resolution compared with LiDAR-based percep-
tion technologies [2–6]. To overcome these limitations, the development of 4D imaging
radar [7] has emerged as a promising solution. Unlike conventional radar, 4D imaging radar
can measure the pitch angle, which allows for the acquisition of elevation information. This
additional dimension enhances the understanding of the environment and improves the
accuracy of object detection and localization. The literature [8,9] extensively explores the
evolution and performance of 4D radar technology, with various studies highlighting ad-
vancements and discussing different brands in this field. Short-range sensing applications
specifically demonstrate the exceptional performance of 4D radar [10].

When compared with LiDAR, perception systems based on 4D imaging radar offer
several advantages. These systems have lower hardware and maintenance costs for object
detection, making them more cost-effective. Moreover, they exhibit resilience to external
factors. LiDAR point cloud and 4D radar point cloud share similarities, but they also
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have notable differences; 4D imaging radar enables velocity measurements, enhancing
the original point cloud data by providing additional dimensions to represent the vector
velocity information of each point. While both technologies provide valuable data for
perception systems, LiDAR’s inability to penetrate fog and dust hinders its application in
severe weather [11], and 4D radar measurements are subject to noise due to multi-path
propagation and limited angular resolution caused by longer wavelengths and a restricted
number of antennas. This limited number of antennas in 4D radar results in a sparser
point cloud compared with the denser point cloud produced by LiDAR systems [12].
Consequently, 4D radar captures less geometry and semantic information compared with
LiDAR. This difference in point cloud density poses a challenge for existing 3D object
detection algorithms, which are specifically designed for dense LiDAR point clouds. As
a result, these algorithms may not perform optimally when directly applied to sparse 4D
radar point cloud data.

Currently, methods based on LiDAR point clouds often employ voxel-based represen-
tations, where the 3D space is divided into voxels and each voxel is assigned a vector to
indicate its status. However, the sheer number of voxels presents computational challenges,
necessitating specialized techniques such as sparse convolution [13]. In outdoor scenes,
the distribution of information is not uniform. To address this, modern methods based on
LiDAR point clouds collapse the height dimension and focus on the bird’s-eye view (BEV),
as this perspective exhibits the most variability in information [14–20]. These methods
encode the 3D information of each object in the BEV grid. BEV-based methods excel in
LiDAR 3D object detection tasks due to their ability to predict coarse-level bounding boxes
for commonly encountered objects [16,17]. Furthermore, as depicted in Figure 1, the dense
nature of the Lidar point cloud allows for a more comprehensive acquisition of an object’s
surface profile compared with the 4D radar point cloud. On average, objects in a 4D
imaging radar point cloud can only be assigned to less than 200 points, which poses a
challenge in encoding the extremely sparse outline information of objects with various 3D
structures using a flattened vector.

Figure 1. Point cloud visualization collected by different sensors. (a) LiDAR. (b) 4D Radar single
frame. (c) 4D Radar 5 frames.
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To develop a safer and more robust 4D radar autonomous driving system, a more
comprehensive and fine-grained understanding of the 3D surroundings is necessary. The
generalization of BEV to model fine-grained 3D structures while maintaining efficiency
and detection performance remains an open question. In other words, the use of spatial
geometry information has become a key factor in improving the accuracy and performance
of the 3D object detection field of 4D radar. In order to enhance 3D surrounding perception,
it is essential to effectively represent 3D scenes.

In this paper, we propose a method that aims to retain and incorporate multi-view
geometric information into spatial features for more robust object detection. Recognizing
the untapped potential within multi-view geometric data, we seek to bridge this gap by
incorporating it into spatial features for object detection purposes. By considering multiple
views simultaneously, we aim to capture a more comprehensive understanding of objects
from different angles or orientations. This approach holds great promise for improving
both accuracy and performance across diverse scenarios. We take inspiration from previous
research but introduce novel techniques specifically designed to retain and incorporate
multi-view geometric information effectively. By integrating data from multiple viewpoints
during feature extraction processes, we create richer representations that enable more
precise identification and localization of objects within complex scenes.

By leveraging multi-view geometric information, our method offers several potential
benefits towards achieving enhanced accuracy or improved overall performance in object
detection tasks: Robustness: Considering multiple views helps mitigate occlusion issues
commonly encountered when analyzing 3D scenes. By capturing information from various
angles, our method can better handle instances where objects may be partially or fully
obscured from certain perspectives. Discriminative Power: The inclusion of multi-view
geometric features provides additional discriminative power in distinguishing between
objects that may share similar appearances but differ in their spatial characteristics. This
added information aids in reducing false positives and improving detection precision.
Generalization: Incorporating multi-view perspectives promotes greater generalization
capabilities, enabling the model to adapt more effectively to unseen or novel scenarios by
leveraging a broader range of spatial representations. The main contributions of our work
can be summarized as follows:

• We addressed the issue of insufficient representation of extremely sparse point clouds
in a single view by decoupling 3D voxel features into separate front view (FV), side
view (SV), and bird’s-eye view (BEV) planes.

• We propose sparse-dimensional compression as an alternative to dense-dimensional
compression. By individually placing voxels on each view plane and aggregating
features at corresponding positions, we construct a two-dimensional sparse feature
matrix. This approach allows us to achieve precise predictions while minimizing
memory and computational demands.

• We suggest multi-view feature interaction (MVI) as a method to enhance spatial
perception. MVI divides the full-size feature map into non-overlapping windows,
enabling more effective interaction between view-inside and view-outside features
through self-attention and cross-attention. This approach enhances spatial perception
at each interaction level with only a small increase in computation.

2. Related Work
2.1. 3D Object Detection with LiDAR Point Cloud

Voxel-based and pillar-based feature representations are the main methods of relevant
prior grid-based 3D detection work using LiDAR point clouds.

VoxelNet [21] stands as one of the pioneering studies that employ end-to-end 3D
detection by dividing a point cloud into voxels and accurately predicting 3D bounding
boxes. While it offers promising results in object recognition tasks, its high computational
cost limits its applicability for real-time applications. SECOND [22] introduces an innova-
tive approach through the utilization of 3D sparse convolution to enhance performance
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while reducing computational overheads. By extracting voxel features using a backbone
network with sparse convolution techniques, these features are then concatenated along
the height dimension before undergoing additional processing via 2D convolution layers
to obtain dense bird’s-eye view (BEV) features. This methodology significantly accelerates
computation speed without compromising accuracy. Building upon the foundations laid
by SECOND [22], CenterPoint [2] proposes a novel idea of employing a single positive cell
for each detected object. By refining existing methodologies further, CenterPoint aims to
streamline detection pipelines by optimizing computations involved in identifying indi-
vidual objects within crowded scenes effectively. The method known as VISTA [23] takes
another step forward by projecting 3D feature maps onto both bird’s-eye view (BEV) and
range view (RV). Through this multi-view transformer fusion approach, VISTA achieves en-
hanced mapping capabilities for improved object recognition across different perspectives.
Recognizing the importance of foreground data during learning processes led researchers
to develop FocalsConv, a dynamic mechanism that dynamically focuses on foreground
information [24]. By selectively emphasizing relevant data, FocalsConv aims to refine the
learning process and enhance detection accuracy. Transformer [25] is a powerful global
modeling method. CenterFormer [26] improves the prediction accuracy of bounding boxes
by aggregating features around the center candidate and introducing this architecture into
the detection head. The majority of existing methods (specifically [2,23,24,27,28]) have been
developed based on the framework established by SECOND [22]. While these methods
have shown promise in various object detection tasks, they fall short in effectively leverag-
ing multi-view geometric information. By solely relying on single perspectives or views,
these approaches overlook potentially significant details that could enhance their accuracy
and overall performance.

PointPillars [29] is a pioneering pillar-based approach that utilizes PointNets [30] to
encode point features before transforming them into a pseudo-image in bird’s-eye view
(BEV) using pooling operations. By employing only 2D convolutional layers, it enables end-
to-end learning while making it suitable for computation-constrained embedded systems
with low latency requirements. Infofocus [31] enhances PointPillars [29] by introducing a
second-stage attention network specifically designed for fine-grained proposal refinement.
This additional network improves precision and accuracy by focusing on important details
within detected objects. Based on CenterPoint-pillar [2] architecture, PillarNet [32] incorpo-
rates the ResNet18 structure with 2D sparse convolution into its backbone for BEV feature
extraction. This modification further enhances computational efficiency while maintaining
high performance levels. Experiments have demonstrated that after sufficient extraction
through 2D sparse convolution techniques, the accuracy achieved by pillar-based networks
can be comparable to voxel-based methods commonly used in 3D object detection tasks.
However, this accomplishment comes at a cost; pillar-based approaches suffer from sig-
nificant loss of critical 3D geometric information during transformation processes. Due to
the inherent nature of pillarization and subsequent projection onto BEV representations,
these approaches struggle to overcome limitations associated with preserving essential
aspects related to 3D object detection. The loss of geometric information poses challenges in
accurately localizing objects and understanding their spatial relationships within the scene.

2.2. 3D Object Detection with 4D Imaging Radar Point Cloud

In the past period of time, despite the fact that the traditional radar was cheaper
than lidar and was robust in complex weather, it was unable to provide sufficient support
for 3D object detection due to its point cloud being too sparse and lacking elevation
information. However, with the maturity of 4D millimeter wave imaging radar technology,
the density of radar point clouds has been significantly improved, and it can provide
elevation information like lidar and additional speed information. This allows people to
see the potential of using 4D radar for 3D object detection.

Based on pillarization inspired by PointPillars [29], RPFA-Net [33] designs a self-
attention module for sparse columnar features to better globally model sparse features.
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RadarMFNet [34] compensates the speed information of the radar point cloud by estimating
the speed information of the ego vehicle and matches the multi-frame millimeter wave
imaging radar point cloud to the last frame, using a multi-frame radar point cloud for 3D
object detection. SMURF [35] Introducing kernel density estimation into radar point clouds,
using additional statistical features to effectively mitigate the adverse effects of inherent
noise and sparsity in point clouds. Furthermore, research on multi-modal fusion of camera
images has also been applied to radar point clouds. RCBEV [36] uses the camera image as
the forward view (FV) and the radar point cloud as the BEV for multi-view fusion. CRN [37]
uses radar point clouds for space occupancy prediction to better guide the conversion of
camera image features into BEV features. RCFusion [38] lifts camera image features to 3D
radar point cloud coordinates through orthogonal feature transformation (OFT) to achieve
multi-modal fusion. LXL [39] uses sampling-based methods to lift 2D image features to 3D
point cloud space and further optimize the lifted features through depth prediction and
occupancy prediction.

2.3. Point Cloud Perception for Indoor Scenes

The change in feature extraction method brought about the change in point cloud
density can also be extended to indoor scenes. Indoor scenes tend to have a higher density
of point clouds than outdoor lidar, let alone 4D imaging radar. That is, we can gain insight
into how the 3D scene is represented by observing the difference in the way features are
extracted as point cloud sparsity decreases.

Poly-PC [40] proposes a Res-SA layer for efficient scaling and a weight-entanglement-
based one-shot NAS technique to find optimal architectures, with a task-prioritization-
based gradient balance algorithm for training and high performance in various tasks.
CO-Net [41] uses a Res-MLP block for feature extraction, a nested layer-wise processing
policy for optimal architecture, and sign-based gradient surgery to promote training and
optimize task-shared parameters in multi-task learning on point clouds. FARP-Net [42]
introduces an LGFAL layer that combines local and global features using an attention-based
fusion module, incorporates an LFAM to map local features into a normal distribution, and
proposes a WRPM for object proposal generation that weighs relation importance among
object candidates for improved proposal quality. Auto-Points [43] uses a SAM layer for
flexible scaling, simplifies architecture search with child candidates, and optimizes them
using a weight-entwinement NAS technique for each point cloud task.

3. Method

In LiDAR-centric autonomous driving perception tasks, it is common to use a 3D
convolutional backbone network for extracting features from the point cloud. These
features are then inputted into a dedicated encoder based on the presentation framework.
To capture more spatial context information in sparser 4D imaging radar point clouds (over
200 times sparser than LiDAR point clouds), we introduce SMIFormer. Figure 2 showcases
the structure of SMIFormer, which proposes the utilization of a transformer-based multi-
view encoder. This encoder utilizes the attention mechanism to enhance the point cloud
feature in the multi-view plane.

3.1. Framework Overview

In SMIFormer, we propose the incorporation of decoupled per-view feature encoding,
feature self-attention inside the view, and feature cross-attention outside the view. These
techniques are employed to efficiently extract multi-view plane features. Each view plane
represents a mesh cell feature associated with one of the three planes, capturing specific
view information from the corresponding pillar area. The feature self-attention inside
the view focuses on encoding in-view features by interacting with view planar features
within the same view. On the other hand, feature cross-attention outside the view facilitates
direct interaction between view plane features across different views, allowing for the
incorporation of richer contextual information from all perspectives.
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Figure 2. The overall architecture of our proposed SMIFormer. Our approach employs a 4D Imaging
Radar point cloud as input for 3D object detection. To enable multi-view feature encoding and
interaction, we introduce a parallel fusion model. Decoupled feature maps are colored by view
directions with blue for bird’s-eye view, red for side view and green for front view.

3.2. Decoupled Per-View Feature Encoding

To generate a comprehensive observation of the scene from different perspectives and
overcome limitations such as object occlusion caused by solely extracting bird’s-eye view
features, we compress the voxel features into separate front view (FV), side view (SV), and
bird’s-eye view (BEV) planes when constructing the three-view features.

The 3D object detectors presented in papers [2,22,29] employ compression techniques
to convert sparse 3D voxel features into dense 2D maps. This is achieved by transforming
sparse features into dense ones and incorporating altitude information (along the z-axis)
into the channel dimension. However, these operations require additional memory and
computational resources.

In order to achieve precise predictions while minimizing memory and computational
demands, we utilize sparse dimension compression to separate the features of each view.
This involves placing voxels individually on each view plane and aggregating the fea-
tures at corresponding positions to construct a two-dimensional sparse feature matrix
(Dbev, D f v, Dsv). The construction of this matrix relies on the values of sparse features and
their coordinate indexes. After performing sparse dimension compression, the calculation
of sparse features Fv and their corresponding coordinates (Cbev, C f v, Csv) is as follows:

Cbev = {(xc, yc, 0) | c ∈ Cvoxel}
C f v = {(xc, 0, zc) | c ∈ Cvoxel}
Csv = {(0, yc, zc) | c ∈ Cvoxel}

(1)
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Fv =

{
∑

c∈Aĉ

fc, | ĉ ∈ Cv

}
, v ∈ [bev, f v, sv]

Aĉ = {c | xc = xĉ, yc = yĉ, zc = zĉ, c ∈ Cv}
(2)

3.3. Voxel Feature Query Module

The decoupled multi-view representation aims to provide a comprehensive description
of a query voxel positioned at (x, y, z) in three-dimensional space. This is accomplished by
consolidating its projections on BEV, SV, and FV views, as illustrated in Figure 3.

Figure 3. Voxel feature query module. Given a specific voxel location, we project its 3D coordinates
onto each of the three axially aligned planes (BEV, SV and FV). Afterwards, we extract the features
of each projection from a sparse 2D feature map and consolidate the resulting features into a single
feature vector.

Specifically, we initiate the process by projecting the voxels onto the BEV, SV, and FV
view planes, thereby obtaining the coordinates [(x, y, 0), (x, 0, z), (0, y, z)]. Subsequently,
we sample the BEV, SV, and FV planes at these coordinates to retrieve the corresponding
features [ f (x,y,0)

bev , f (x,0,z)
sv , f (0,y,z)

f v ]:

f (x,y,0)
bev = I(Fbev, Tbev(x, y, 0))

f (x,0,z)
sv = I(Fsv, Tsv(x, 0, z))

f (0,y,z)
f v = I(Ff v, Tf v(0, y, z))

(3)

By combining these three features with the voxel’s intrinsic features, we generate the
final f (x,y,z)

spatial :

f (x,y,z)
spatial = SUM( f (x,y,z)

voxel , f (x,y,0)
bev , f (x,0,z)

sv , f (0,y,z)
f v ) (4)

The variables Fbev, Fsv, and Ff v are feature maps represented by tensors with dimen-
sions RWbev×Hbev×D, RW f vsv×H f vsv×D, and RW f vsv×H f vsv×D, respectively. The variable f is a
feature vector represented by a tensor with dimensions R1×D. I represent the index function
that samples the feature vectors from the feature maps of BEV, SV, and FV based on the given
coordinates. The coordinate transformation function, denoted as T, is defined as follows: Con-
sidering that the BEV, SV, and FV view planes align with the axes of three-dimensional space,
each projection function T only needs to perform a straightforward index dimensionality
reduction on the two associated coordinate systems it encompasses.

3.4. Splitting for Multi-View Feature Interaction

The aforementioned decoupled per-view feature encoding structure compresses the
sparse three-dimensional feature voxels into three views, utilizing the feature map as the
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representation of each perspective to enable multi-perspective feature interaction. However,
due to the high-resolution nature of each view plane feature (approximately 105 queries), it
becomes inefficient and feature-redundant to compute full-scale attention directly within
the same view, considering the significant computational costs and GPU memory require-
ments. To address this issue, we propose a windowing strategy to temporally divide
the full-size feature map into non-overlapping windows, with each window covering a
small area of the feature map. Specifically, the two-dimensional sparse feature map with
spatial dimensions W × H is evenly divided into g = gw × gh groups, where each group
has spatial dimensions W ′ × H′ (assuming W = W ′ × gw, H = H′ × gh). This paper’s
windowing strategy enables more effective multi-view feature interaction through the
proposed self-attention of view-inside features and cross-attention of view-outside features.

3.5. Feature Self-Attention inside the View

In SMIFormer, we utilize the self-attention of view-inside features to promote feature in-
teraction within each view. To achieve this, we first gather sparse features Fi = { f1,i, . . . , fNi ,i}
within each window i for a given perspective’s feature map. Each window can be repre-
sented as a three-dimensional sparse feature matrix. The spatial shape of these matrices
varies depending on the type of view (bird’s-eye view or front/side views). For exam-
ple, in a bird’s-eye view representation, the spatial shape is Wbev × Hbev × D, while it is
W f vsv × H f vsv × D for front and side views. Here, D represents the feature dimensionality
per non-empty voxel. In the case of the bird’s-eye view, the features Fi within each window
form an Ni ×D matrix in its three-dimensional sparse matrix representation. It is important
to note that these three-dimensional feature matrices are sparse, thus satisfying the condi-
tion (Wi × Hi) ≥ Ni. To further facilitate interaction among all sparse voxels within each
view, we calculate feature multi-head self-attention within the view on a per-view basis:

F̂i = MA
(

Lq(Fi + PE), Lk(Fi + PE), Lv(Fi)
)

(5)

The linear projection layers, Lq(·), Lk(·), and Lv(·), are employed to generate query,
key, and value features for the multi-head self-attention mechanism while maintaining the
same semantics. To integrate spatial information into the attention process, we introduce
‘PE’ as a learnable index-based 2D position embedding for each sparse voxel. This embed-
ding is obtained by mapping the indices (i, j) of the sparse voxels through a Multi-Layer
Perceptron (MLP).

3.6. Feature Cross-Attention outside the View

We aim to propagate sparse voxel information at the view-level across different views
after applying self-attention within the view. This allows us to capture more comprehensive
three-dimensional spatial information. To achieve this, we employ the attention mechanism
using the per-view feature representation. We query the features summarized in the full
view of the entire three-dimensional space.

To enhance the fusion of features between each view, we calculate the cross-attention
of the external features in the view. Specifically, we group all the divided windows in all
views based on their voxel projection in 3D space. When windows from the same voxel
block are projected onto the three views, they are grouped together. This grouping enables
the interaction of window features from the three views within the group, further enriching
the features of each view with information from other views. In the following example, a
view is used as the query feature, while other views serve as the key and value features for
calculating multi-head cross-attention:

F̂v1
i = MA

(
Lq
(

Fv1
i + PEv1

)
, Lk
(

Fv2
i + PEv2

)
, Lv
(

Fv2
i
))

+MA
(

Lq
(

Fv1
i + PEv1

)
, Lk
(

Fv2
i + PEv3

)
, Lv
(

Fv3
i
)) (6)

Each view performs similar calculations to update its own features.
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4. Experiments
4.1. Dataset

In this study, we utilize the View of Delft (VoD) [44] dataset to evaluate the performance
of the proposed method. This dataset is designed to validate the performance of radar-
based road detection. The dataset also covers multi-modal data from various sensors,
including 4D radar points, LiDAR points, and camera images. The VoD dataset provides a
corresponding label for each object to be detected, including its category, a 3D bounding box,
and a tracking ID. As well as coordinate transformation matrices between different sensors.

In our experiment, we mainly detected three main categories in the dataset, including
cars, pedestrians, and cyclists. For the division of the data set, we follow the official split
method. Specifically, the VoD dataset comprises 5139 frames for training and 1296 frames
for validation. Since the VoD data set does not provide test set labels and automated test
set evaluation systems, our tests and analysis are performed on the validation set.

4.2. Evaluation Metrics

We evaluated SMIFormer using mean average precision (mAP). The threshold used
in the calculation of AP is based on the intersection over union (IoU) of the predicted
and ground truth bounding boxes in 3D, which requires an overlap of 0.5, 0.25, and 0.25
for cars (Car), pedestrians (Ped), and cyclists (Cyc), respectively. In the VoD dataset,
there are two official evaluation matrices, each specifying different ranges of detection
areas: (1) region of the entire annotation area (camera FoV up to 50 m). (2) region of the
driving corridor, defined as a rectangle on the ground plane in front of the vehicle as
[−4 m < x < 4 m, z < 25 m] in camera coordinates, which is more relevant to actual driving.

4.3. Implementation Details

The model implementation is based on OpenPCDet [45], an open-source framework
designed for 3D object detection, and was trained on four NVIDIA RTX A6000 GPUs
for 80 epochs; the batch size is set to 4. The point cloud range (PCR) is limited to
D(PCR) = {(x, y, z) | 0 < x < 51.2 m, −25.6 m < y < 25.6 m, −3 m < z < 2 m} in the
radar coordinate. The voxel size in the voxelization process for the radar cloud points is
set to 0.05 m × 0.05 m × 0.125 m. We implemented Adam as our optimizer, set the initial
learning rate to 0.003, weight decay to 0.01, and momentum to 0.9. After we use the
proposed method to encode the point cloud data and obtain the BEV feature map, We
implement the dense head based on the CenterPoint [2] to output the detected bounding
boxes. For data augmentation, because the velocity measured by the radar must remain
relative to the angle of the observed object, rotating the bounding boxes and the points
inside will change the radial component of the object’s velocity in an unknown way [44].
Therefore, we only use mirror inversion and scaling as augmentation.

4.4. Results and Analysis

In this study, we compare SMIFormer with other state-of-the-art models for 3D de-
tection based on point clouds. The experimental results of the VoD [44] validation set are
presented in Table 1. To obtain a comprehensive comparison, We deployed some 3D object
detection networks designed for LiDAR point clouds on the VoD dataset for evaluation,
including anchor-based detectors like PointPillars [29], SECOND [22], and the anchor-free
detector CenterPoint [2]. Furthermore, we compare the proposed method with recently
proposed 3D object detection methods designed for 4D radar, such as LXL-R [39]. Recently,
a multi-modal fusion of camera images and radar point clouds has become mainstream
for 3D object detection; thus, we also compared our method with the latest RCFusion [38],
which was designed for the feature fusion of 4D radar point clouds and camera images.
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Table 1. Comparison on the evaluation set of VoD dataset. All the approaches are executed with
5-scans radar detection points.

Method Modality Entire Annotation Area Driving Corridor Area
Car Ped Cyc mAP Car Ped Cyc mAP

PointPillars [29] R 37.24 32.19 66.80 45.41 70.55 43.28 88.13 67.32
SECOND [22] R 40.40 30.64 62.51 44.52 72.25 41.19 83.39 65.61
CenterPoint [2] R 32.74 38.00 65.51 45.42 62.01 48.18 84.98 65.06
LXL-R [39] R 32.75 39.65 68.13 46.84 70.26 47.34 87.93 68.51
RCFusion [38] R + C 41.70 38.95 68.31 49.65 71.87 47.50 88.33 69.23
Ours R 39.53 41.88 64.91 48.77 77.04 53.40 82.95 71.13

Our SMIFormer achieves better results compared with several other detection methods.
Compared with CenterPoint, which also uses anchor-free detectors, the proposed method
with a three-view fusion encoder has achieved significant improvements, with an increase
of 3.35% and 6.07% on mAP across the entire annotation area and driving corridor area.
Compared with conventional methods using anchor-based detectors, the proposed method
also achieved an improvement of no less than 3.36% and 4.41% in mAP in the two annotated
areas, respectively. LXL is a relatively new 3D target detection method based on a 4D
radar point cloud, which has achieved optimal results in single-modal detection; our
method still outperforms it in terms of mAP, which confirms that our proposed method
indeed improves object detection accuracy. At the same time, we found that SMIFormer’s
pedestrian detection accuracy is significantly higher than other solutions. This may be
because the pedestrian’s bounding boxes are prone to interference and occlusion problems
due to their small size. SMIFormer improves pedestrian detection by introducing additional
view capabilities to enhance point cloud features associated with small objects.

Despite the fact that SMIFormer only uses a 4D radar point cloud as a single-modal
input, compared with the newer radar-camera fusion method RCFusion [38], although the
mAP has declined in the entire annotation area, it has achieved significant improvements
in the driving corridor area. This may be due to the sparsity of radar points, resulting
in some targets’ bounding boxes far away from the radar having very few radar points.
The fusion-based detection method uses camera images to supplement the features of
these areas, thereby improving the mAP of the entire area. While SIMFormer combines
features from different views, it enables the model to have better perception capabilities in
relatively dense areas of point clouds, thereby improving detection accuracy in the driving
corridor areas.

We visualize the results of SMIFormer on the vod validation set in Figure 4. We can
find that the proposed method can detect the target object in the vast majority of cases,
which shows that under the support of the tri-perspective fusion, our method can accurately
locate the position of the object. For a small number of undetected objects, we observed that
there are few or even no point clouds in these ground truth bounding boxes, which results
in the generation of empty voxels and prevents the model from obtaining useful features.

4.5. Ablation Study

In this subsection, we performed several experiments on the VoD validation dataset to
further demonstrate the effectiveness of our SMIFormer.

4.5.1. Effects of Proposed Components

A comprehensive set of ablation studies is conducted for each of our proposed compo-
nents, as illustrated in Table 2. VoxelNet [21] is adopted as the baseline, and the Inception
sparse convolution block and 2D sparse downsample encoder are consistently employed
across all experiments.
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Figure 4. Visualization results on the VoD validation set. Each row contains two sets of data frames of
images and radar points (gray points). The left side is the ground truth, the right side is the prediction
result, the red box represents the car, the blue box represents the cyclist, and the green box represents
the pedestrian. The local region of the point cloud, scaled by the orange wire box, demonstrates that
for a few undetected objects, there are few to no points in these ground truth bounding boxes.

Table 2. Module’s ablation study on the VoD validation dataset. All the approaches are executed
with 5-scans radar detection points on VoD dataset.

# MVD SAI CAO Entire Annotation Area Driving Corridor Area
Car Ped Cyc mAP Car Ped Cyc mAP

1 37.82 39.44 62.18 46.48 72.08 49.29 83.71 68.36
2 X 41.16 40.07 61.06 47.43 78.73 52.43 74.80 68.65
3 X X 39.32 39.92 63.53 47.59 70.64 53.79 85.57 70.00
4 X X X 39.53 41.88 64.91 48.77 77.04 53.40 82.95 71.13

Based on the results presented in Table 2, it is evident that the introduction of multi-
view plane decoupling into the voxel encoder (MVD, #1 and #2) brings noticeable improve-
ments compared with the baseline. This serves as evidence that incorporating semantic
features from different perspective views in the voxel space significantly enhances the
model’s ability to represent radar point clouds. Furthermore, the utilization of attention
operations further enhances the efficiency of multi-view fusion. Feature self-attention
inside the view (SAI, #3) can enhance the global representation of a single view, thereby
improving the performance of the network. Additionally, feature cross-attention outside
the view (CAO, #4) enhances the network’s ability to represent different perspectives by
enabling features from different views to interact in the same semantic space. This inte-
gration of features from different perspectives leads to a better overall performance. By
combining all of these components (#4), we observe a significant improvement in mAP
for both the entire annotation area (from 46.48% to 48.77%) and the driving corridor area
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(from 68.36% to 71.13%). These results serve as strong evidence for the effectiveness of our
proposed method.

4.5.2. Effects of Splitting Window Size

We also investigate the impact of splitting window size on the implementation of
feature cross-attention outside the view during the fusion of different views. Window sizes
of 2, 4, and 8 are selected, and the model containing all components is evaluated accordingly.
The results are presented in Table 3, revealing that the model achieves the highest mAP in
both annotation areas when the window size is set to 4. When the window size is reduced
to 2, the model’s performance experiences a slight decrease, but it should be noted that
a smaller window size leads to increased computational resource requirements during
attention calculation per unit of time. Conversely, when the window size is increased
to 8, the model encounters a significant drop in performance, particularly in pedestrian
detection. This can be attributed to the relatively small bounding boxes of pedestrians.
Larger window sizes tend to collect more noise information, thereby affecting the accuracy
of detecting small targets.

Table 3. Splitting window size ablation study on the VoD validation dataset. All the approaches are
executed with 5-scans radar detection points on VoD dataset.

Window Size Entire Annotation Area Driving Corridor Area
Car Ped Cyc mAP Car Ped Cyc mAP

2 43.48 38.59 63.18 48.41 79.59 51.10 79.95 70.21
4 39.53 41.88 64.91 48.77 77.04 53.40 82.95 71.13
8 39.35 35.69 64.49 46.51 77.58 47.98 86.37 70.64

We conducted an experiment to investigate the impact of different window sizes on
inference latency. Specifically, we tested the inference time of SMIFormer using various
sizes of splitting windows on a single GPU. The results are presented in Table 4. It is
evident that both too-small and too-large window sizes result in increased reasoning delay.
When the window size is too small, the number of generated windows increases, leading
to a higher frequency of attention calculations and thus longer inference times. Conversely,
when the window size is too large, although the total number of windows decreases, the
number of query vectors within each window significantly increases, resulting in increased
inference latency. Therefore, in our other experiments, we consistently adopted a splitting
window size of 4.

Table 4. Latency evaluation for different splitting window sizes on a single GPU.

Window Size Latency

2 68 ms
4 61 ms
8 65 ms
32 69 ms

128 (w/o splitting) 90 ms

5. Conclusions

In this study, we proposed SMIFormer, a 3D object detection network based on 4D
imaging radar. Compared with the traditional 3D object detection backbone network
that converts 3D scene features into bird’s-eye view features, due to the sparsity of radar
point clouds, the features of a single perspective will also be very sparse and cannot fully
represent the whole 3D scene. SMIFormer additionally decouples the front view and side
view features, significantly improves the spatial representation capability of the network,
and introduces additional downsampling layers to enable the network to extract more deep
semantic information. For the interaction between different views, we propose the MVI
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module, which extracts richer semantic information from sparse point clouds by integrating
self-attention-based intra-view feature interaction and cross-attention-based inter-view
feature interaction.

In order to solve the problem of the high computational cost of attention mechanism
in high-resolution feature maps, we propose a window calculation strategy that divides
the multi-view feature maps into a series of non-overlapping windows. Self-attention is
performed on internal sparse features in each window, and cross-attention is performed
between multi-view windows only when these windows are projected onto the same voxel.
This strategy reduces the amount of calculation while ensuring the effectiveness of feature
extraction, thereby improving the accuracy of 3D object detection.

The proposed SMIFormer proposes a new method to enhance feature extraction of
extremely sparse point clouds, which may be a potential solution for feature extraction of
extremely sparse point clouds. Future works will focus on further improving the network’s
feature extraction capabilities from sparse point clouds and utilizing camera images to
improve multi-view representation of 4D imaging radar point clouds, which will further
improve the accuracy and efficiency of 3D object detection based on 4D radar point clouds.
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