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A B S T R A C T

With the extensive application of object detection in intelligent security, the demand for detecting prohibited
items in X-ray images has become increasingly stringent. Unlike natural images, X-ray images present
unique challenges such as complex backgrounds and mutual occlusion between prohibited and normal items.
Consequently, applying traditional detection methods to X-ray images remains a significant challenge. To
tackle these challenges, we have developed a unique frequency-aware dual-stream transformers (FDTNet) that
is specifically designed for analyzing X-ray images. The FDTNet consists of two streams: one handles the
original image, while the other deals with an image that has been enhanced with frequency domain features.
In order to achieve precise detection of prohibited items, we introduce a frequency-aware module (FAM) that
enhances the representation of prohibited items by utilizing information from the frequency domain. This FAM
can be easily integrated into other backbones or detectors as it is a plug-and-play module. Additionally, to
enhance the fusion of feature maps from both streams, we utilize a global and channel attention module (GCA)
that aggregates texture representations for spatial feature streams. Our evaluation of the proposed FDTNet on
the OPIXray datasets and PIDray datasets demonstrates that our detection mAP achieves 88.02 and 68.2,
respectively. Extensive experiments conducted on publicly available datasets provide substantial evidence that
our proposed network significantly improves the detection of prohibited items compared to state-of-the-art
methods.
1. Introduction

Safety inspections are crucial for upholding social and public safety
during activities like using public transportation or accessing sensitive
departments. Security personnel rely on X-ray images from inspec-
tion machines to detect prohibited items concealed within backpacks.
However, individuals often intentionally hide such items within non-
prohibited objects to evade detection, posing a significant threat to
public safety. Thus, there is an urgent need for a fast and effective
method to help security inspectors accurately identify prohibited items
in X-ray images.

X-rays are high-frequency electromagnetic waves with short wave-
lengths (ranging from 0.01 nm to 10 nm) and strong penetration
capabilities. When an X-ray source irradiates an object during inspec-
tion, its absorption varies due to differences in density among objects.
The resulting X-ray images reflect this information, such as metal
objects appearing blue. Security inspectors can thus assess whether pro-
hibited items are present without needing to unpack bags or containers.
However, deliberate attempts to conceal prohibited items present chal-
lenges during inspections. Objects stacked within boxes or backpacks
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can cause overlapping in X-ray images, resulting in disorderly ap-
pearances that complicate item identification. Consequently, detecting
prohibited items solely through X-ray imaging remains a challenging
task due to the unique characteristics of these images compared to tra-
ditional natural ones. Existing methods for analyzing X-ray images fall
into two main categories: one focuses on enhancing features by extract-
ing edge information while the other enhances low-level and high-level
features using different approaches aimed at improving classification
and localization abilities. While significant progress has been made in
applying object detection techniques to X-ray imaging tasks, there is
still ample room for improvement—particularly regarding small-sized
prohibited item identification and addressing overlap between objects
within these specialized types of imagery.

Compared to objects in natural visible light images, objects within
airtight packages in X-ray images possess distinct characteristics. In
X-ray images, these objects are randomly overlapped and placed to-
gether (Mery et al., 2016; Ma et al., 2023; Miao et al., 2019). Conse-
quently, object detection becomes challenging.
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Fig. 1. From left to right, it represents the real annotation of the image object, the
low frequency component and the high frequency component of the image.

X-ray security scanners display objects in different colors to help
workers identify them, especially in images with complex backgrounds.
The low-frequency component of an image represents areas where the
intensity shift is minimal, while the high-frequency components refer to
the edges and contours. To extract these frequency information, we uti-
lize Fourier transform along with low-pass and high-pass filters, which
are then visualized through inverse Fourier transform (Fig. 1). By ex-
tracting the high-frequency content, prohibited items can be effectively
separated from the background. Hence, image frequency information
serves as a valuable supplement to RGB data. We aim to leverage the
inherent features outlined by high-frequency information for detecting
prohibited items. Specifically, we focus on enhancing edge details by
extracting features from high-frequency images. Various techniques
exist for obtaining different frequency components within an image.
For instance, Chen et al. (2021) utilized Discrete Cosine Transform
(DCT) to convert RGB-domain images into frequency-domain repre-
sentations and proposed an RGB-Frequency Attention Module (RFAM)
for comprehensive feature representation by fusing RGB and frequency
domains. Similarly, 𝐹 3-Net (Qian et al., 2020) employed Frequency-
aware Decomposition (FAD) and Local Frequency Statistics (LFS) to
detect fake elements in human faces. To emphasize key characteristics
of targeted prohibited items during detection processes, enhancement
via frequency angle is being considered.

Due to the specific requirements of security inspection tasks, the
current public datasets for prohibited items in X-ray images primarily
include OPIXray (Wei et al., 2020), PIDray (Wang et al., 2021c),
GDXray (Mery et al., 2015), and SIXray (Miao et al., 2019). How-
ever, GDXray has a limited number of samples, featuring only three
categories of prohibited items and lacking complex backgrounds and
occlusions. As a result, object detection within this dataset does not
pose significant challenges and offers limited support for contraband
object detection research. On the contrary, although SIXray consists
of an extensive collection of 1,059,231 images, the actual instances
depicting prohibited items are relatively low, with only 8929 instances,
representing merely 0.84% of all images. Additionally, both GDXray
and SIXray datasets primarily focus on classification tasks and do
not provide bounding box annotations necessary for precise object
localization. Therefore, to address these limitations and ensure better
representation in terms of category size and sample size for evaluating
contraband object detection research, we have chosen the OPIXray and
PIDray datasets as more suitable evaluation datasets.

In this paper, we introduce a novel dual-stream frequency-aware
detection network that leverages both RGB information and frequency
domain information from X-ray images. Our approach employs two
distinct backbones to extract RGB features and frequency domain fea-
tures separately, without parameter sharing. These feature maps are
then fused to enhance the overall image representation. To specifically
enhance the features in the frequency domain perspective, we propose
a simple and flexible frequency-aware module (FAM). This module
aggregates the features in high-frequency images, improving their dis-
2

criminative power. Moreover, to better integrate the original RGB
features with the frequency domain features, we propose a plug-and-
play global and channel attention module (GCA). GCA combines spatial
global representation abilities inspired by transformer with attention
mechanisms in the channel dimension. By adopting this complementary
approach, our method effectively promotes feature map representation
learning. The main contributions of this paper can be summarized as
follows:

• We propose a dual-stream frequency-aware detection network.
One branch of the network focuses on extracting RGB features
from the image, while the other branch extracts features from
a frequency-enhanced feature map. To effectively fuse RGB and
frequency information for prohibited item detection, we propose
a global and channel attention module (GCA). This module is
designed to enhance the feature map generated by the RGB
branch through attention mechanisms in both spatial and channel
dimensions.

• In light of the distinctive frequency information exhibited by
prohibited items in X-ray images compared to the background,
we have developed a frequency-aware module (FAM) to extract
this specific characteristic. Within the FAM, we employ a fre-
quency feature enhancement (FFE) operation that enhances the
image features from a frequency perspective. This enables us
to effectively capture and leverage the unique frequency infor-
mation associated with prohibited items for improved detection
performance.

• Extensive experiments on the OPIXray (Wei et al., 2020) and
PIDray (Wang et al., 2021c) public datasets confirm the superi-
ority of our proposed FDTNet over existing methods in detecting
prohibited items. Our method achieves a detection mAP of 88.02
and 68.2 on PIDray and OPIXray datasets, respectively. Addition-
ally, during testing runs on an NVIDIA TITAN RTX GPU, our
method achieves a frame rate of 13.3 fps. This ensures that our
method can be practically applied in security scanning scenar-
ios without experiencing significant delays or disruptions when
objects pass through the scanners.

2. Related work

2.1. X-ray object detection

The De-occlusion Attention Module (DOAM) (Wei et al., 2020)
enhances image features by extracting edge and material information
from prohibited items. These enhanced features are then fed into
subsequent feature extraction and detection networks. EAOD-Net (Ma
et al., 2022) incorporates a learnable Gabor revolution layer to capture
the edge information of prohibited items, while CFPA-Net (Wei et al.,
2021) utilizes the Cross-Layer Feature Extraction Fusion Module (CEF)
to enhance semantics and localization information across high-level
and low-level features. The Parallel Attention module (PA) in CFPA-
Net captures long-range contextual information, resulting in more de-
tailed features. Chen et al. (2023) introduce a mixed samples-driven
methodology with DDPM to overcome small sample size limitations
in x-ray image analysis for CFCS damage identification, incorporating
synthesis of new samples through DDPM, integration with authen-
tic measurements, and employing a DenseNet-based module within
a mixed samples-driven architecture for diagnosis. IEFPN, proposed
by Wang et al. (2021a), builds upon FPN by re-weighting different
layers’ features using a layer-based recalibration module (LRM). This
promotes better exchange of information between feature layers. Ad-
ditionally, IEFPN enhances location information in low-level features
through the Channel-Attention-based Skip connection path (CSP). To
address overlapping prohibited items, Zhao et al. (2022) introduce
a new tag assignment method based on ATSS as an effective solu-
tion. Liu et al. (2022) propose a consistent multiscale feature mapping
method with a combination of multiscale feature mapping, consis-

tency strategy, and feature fusion model to improve the recognition
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Fig. 2. Overall structure of the proposed FDTNet. Our approach employs a X-ray image as input for prohibited object detection. To enable frequency feature encoding and
interaction, we introduce a dual-stream fusion model. The yellow branch represents the network’s image RGB feature stream, and the blue branch represents the network’s image
frequency feature stream.
of defects in X-ray images. Ding et al. (2023) propose FE-DETR, a
transformer-based object detection framework that improves the per-
formance of anchor-based detectors for detecting foreign bodies (FBs)
through split-attention, CBAM and DCN integration, MSFE module
for feature dispersion handling, transformer as prediction head, and
optimized training strategies.

These methods collectively aim to improve object detection perfor-
mance by leveraging various attention mechanisms, fusion techniques,
recalibration modules, and innovative tag assignment strategies.

2.2. Dual-stream network

The primary objective of the dual-stream network is to acquire
more comprehensive image features from different perspectives. Con-
former (Peng et al., 2021) achieves this by combining local convo-
lutional features and global transformer-based features in a parallel
and interactive manner. This fusion process results in richer image
features. DS-Net (Mao et al., 2021), built upon the traditional ResNet
block (He et al., 2016), organizes feature maps in the channel dimen-
sion and extracts local and global features using both convolutional
and transformer operations. These extracted features are then fused
through cross-attention mechanisms and concatenation. CBNet (Liu
et al., 2020) employs multiple backbones with identical structures
but independent parameters to extract image features. Each stage of
the assistant backbone transmits its output to subsequent backbones
via composite connections. The multi-scale feature maps generated
by the final backbone are utilized for detection and segmentation
tasks. PEL (Gu et al., 2021) utilizes a dual-stream network with Ef-
ficientNet (Tan and Le, 2019) as its backbone architecture. It takes
RGB images as well as fine-grained frequency components as input,
enhancing feature representations between streams through mutual
enhancement modules.

In summary, these approaches employ various techniques such
as parallel fusion of local–global information, composite connections
among multiple backbones, or mutual enhancement between streams
to obtain richer image features within their respective dual-stream
networks.

2.3. Attention mechanism and transformer

The attention mechanism’s primary goal is to mimic the human
visual system, prioritizing important objects in an image rather than
irrelevant backgrounds. SENet (Hu et al., 2018) utilizes global average
3

pooling to represent overall information and a squeeze-and-excitation
module to learn channel connections. CBAM (Woo et al., 2018) further
enhances feature representation through both channel attention and
spatial attention. Transformer (Vaswani et al., 2017) excel at extracting
global features and have demonstrated outstanding performance in NLP
tasks. In image classification, ViT (Dosovitskiy et al., 2020) introduced
multi-head self-attention (MHSA). This concept inspired the develop-
ment of various transformer-based backbone networks like PVT (Wang
et al., 2021b), Swin (Liu et al., 2021), and MPViT (Lee et al., 2022) for
image dense prediction tasks by dividing images into patches.

In order to learn the relationship between channels and global pixel
locations of feature maps, we introduce channel attention into the
traditional transformer block. This enhancement enables us to better
understand how each channel contributes to the overall information
across different areas of the image.

3. The proposed method

The framework of the proposed FDTNet is shown in Fig. 2.
Frequency-aware module (FAM) obtains the frequency information of
the input RGB image through SRM filter and the frequency feature
enhancement operation in Section 3.2. The original image and the
frequency image from FAM as two separate inputs are fed into a dual-
stream network with ResNeXt101 as the backbone. To better fuse the
features from RGB image branches, we proposed global and channel
attention module (GCA) for extracting global features and channel
features in Section 3.3.

3.1. Network architecture

We feed RGB X-ray image into the first backbone, which we denote
as 𝑋𝑟. In the yellow branch shown in Fig. 2, the various stages of the
first branch extract feature maps of different scales, referred to as 𝑋𝑠

𝑟 ,
where 0 ≤ 𝑠 ≤ 4. Simultaneously, the frequency information of the input
image is extracted and fused with the feature image 𝑋0

𝑟 obtained from
the previous backbone. The resulting fused feature map, denoted as 𝑋𝑙,
is then input into another branch. This process enhances the detection
performance of the network by extracting and enhancing the image’s
frequency information. Our detection heads are constructed using a
simple MLP layer, eliminating the need for complex designs.

During the training phase, the feature maps 𝑋𝑠
𝑟 and 𝑋𝑠

𝑙 obtained
from the various branches are utilized for detection tasks. Specifically,
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the feature maps corresponding to 1 ≤ 𝑠 ≤ 4 are used and supervised
in the detection heads.

We designate the feature map pixel closest to the center of each
labeled bounding box as a positive sample and supervise it using focal
loss (Lin et al., 2017), denoted as 𝐿𝑝𝑜𝑠. We directly regress the class
scores, bounding box coordinates and masks from the pixel features of
the multi-scale feature map. The classification loss and mask loss, rep-
resented by 𝐿𝑐𝑙𝑠 and 𝐿𝑠𝑒𝑔 , are calculated using cross-entropy loss. For
each bounding box, we predict the position offset (𝛿𝑥, 𝛿𝑦) ∈ 𝑅1×2 and
the two-dimensional sizes (𝑙, 𝑤) ∈ 𝑅1×2. The regression loss, denoted
as 𝐿𝑟𝑒𝑔 , is computed using L1 loss. To further enhance performance,
we incorporate the IoU loss (𝐿𝐼𝑜𝑈 ) between the predicted box and the
ground truth box (Zhou et al., 2019). The total loss function is defined
by assigning weights to the positive, classification, regression, IoU and
mask components:

𝐿𝑡𝑜𝑡𝑎𝑙 = 0.85𝐿𝑝𝑜𝑠 + 0.95𝐿𝑐𝑙𝑠 + 0.25(𝐿𝑟𝑒𝑔 + 𝐿𝐼𝑜𝑈 ) + 0.5𝐿𝑠𝑒𝑔 (1)

The overall loss of the network is as follows:

𝐿 = 𝐿𝑙𝑒𝑎𝑑
𝑡𝑜𝑡𝑎𝑙 + 𝜆𝐿𝑎𝑠𝑠𝑖𝑠𝑡

𝑡𝑜𝑡𝑎𝑙 (2)

Where 𝐿𝑙𝑒𝑎𝑑
𝑡𝑜𝑡𝑎𝑙 represents the total loss of the frequency stream, and

𝐿𝑎𝑠𝑠𝑖𝑠𝑡
𝑡𝑜𝑡𝑎𝑙 represents the total loss of the original RGB stream. It is im-

portant to note that during the test phase, 𝑋𝑠
𝑟 will not be fed into the

detection heads.

3.2. Frequency-aware module

The frequency-aware module is mainly composed of two parts:
frequency information extraction and frequency feature enhancement,
as shown in Fig. 3. To obtain the frequency information of the X-ray
image, for an input RGB image 𝑋𝑟 with size 𝐻 × 𝑊 × 3, use SRM
filter (Fridrich and Kodovsky, 2012) to convert it into frequency image
𝑋ℎ with size 𝐻×𝑊 ×3. SRM filter consists of three fixed filter operators
(𝑓1, 𝑓2, 𝑓3).
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1
4

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0
0 −1 −2 −1 0
0 2 −4 2 0
0 −1 −2 −1 0
0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝑓2 =
1
12

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−1 2 −2 2 −1
2 −6 −8 −6 2
−2 8 −12 8 −2
2 −6 −8 −6 2
−1 2 −2 2 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝑓3 =
1
2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0
0 0 0 0 0
0 1 −2 1 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(3)

𝑋ℎ = 𝑆𝑅𝑀(𝑋𝑟, [𝑓1, 𝑓2, 𝑓3]) (4)

In order to use the feature map 𝑋0
𝑟 from the lowest layer of RGB

branch, we use the convolutional kernel with kernel size of 7, step
size of 2, and padding of 3 to increase the number of image channels
passing through the SRM filter from 3 to 64. Secondly, max pooling
with a kernel size of 3 × 3 is used to reduce the width and height of
the frequency image 𝑋ℎ to 1

4 of the original image. The specific formula
is as follows:

𝑋ℎ = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔3×3(𝐶𝑜𝑛𝑣7×7(𝑋ℎ)) (5)

Inspired by CBAM (Woo et al., 2018), average pooling and max-
imum pooling are performed on the frequency image 𝑋ℎ along the
channel dimension, and spatial attention is used to obtain edge features
4

Fig. 3. Framework of frequency-aware Module.

in the frequency image 𝑋ℎ to generate feature maps 𝑋𝑎𝑣𝑔 ∈ 𝑅
𝐻
4 ×𝑊

4 ×1

and 𝑋𝑚𝑎𝑥 ∈ 𝑅
𝐻
4 ×𝑊

4 ×1. After concat 𝑋𝑎𝑣𝑔 and 𝑋𝑚𝑎𝑥, use a 1 × 1
convolution to generate an attention map, denoted as 𝐴𝑚(

𝐻
4 × 𝑊

4 × 1).

𝐴𝑚 = 𝜎(𝐶𝑜𝑛𝑣1×1(𝐶𝑜𝑛𝑐𝑎𝑡(𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑋ℎ), 𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑋ℎ)))) (6)

Where 𝜎 represents the sigmoid activation function. To enable
the model to learn adaptively based on the frequency information
of different images, we introduce a learnable hyper parameter 𝛼. In
order to highlight the edge high-frequency feature of prohibited items,
multiply 𝑋0

𝑟 with attention map 𝐴𝑚 and enhance it with parameter 𝛼.
To supplement the low-frequency information in 𝑋0

𝑟 , average pooling
is a simple and effective way to extract the low-frequency information
of the feature map. Therefore, the calculation formula of feature map
𝑋𝑙 that input into the second backbone is as follows:

𝑋𝑙 = (1 + 𝛼 × 𝐴𝑚)⊙𝑋0
𝑟 + 𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑖𝑛𝑔3×3(𝑋0

𝑟 ) (7)

3.3. Global and channel attention

Due to the global representation capability of self-attention, we
propose the global and channel attention module (GCA), as shown in
Fig. 4. To reduce the number of parameters and computation of the
model, the feature maps 𝑋3

𝑟 and 𝑋4
𝑟 from the RGB branch use a 3 × 3

convolution, batch normalization(BN) and ReLu to reduce the channel
dimension. The number of channels of feature maps of 𝑋1

𝑟 and 𝑋2
𝑟

remains unchanged, and the obtained feature map is marked as 𝐹 𝑠
𝑟 :

𝐹 𝑠
𝑟 = 𝛿(𝐵𝑁(𝐶𝑜𝑛𝑣3×3(𝑋𝑠

𝑟 ))) (8)

Where 𝛿 represents the Relu activation function. The feature map
𝐹 𝑠
𝑟 is operated by three branches, as shown in Fig. 4. In order to obtain

global features 𝐹 𝑠
𝑔𝑙 of different scale feature maps, the structure of

transformer is used to calculate global attention:

𝐹 𝑠
𝑟 = 𝑆𝑅𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐿𝑞(𝐿𝑁(𝐹 𝑠

𝑟 )), 𝐿𝑘(𝐿𝑁(𝐹 𝑠
𝑟 )), 𝐿𝑣(𝐿𝑁(𝐹 𝑠

𝑟 ))) + 𝐹 𝑠
𝑟 (9)

𝐿𝑞(𝐹 ) =𝐹𝑊 𝑄 ∈ 𝑅ℎ𝑤×𝐶

𝐿𝑘(𝐹 ) =𝐷𝑜𝑤𝑛𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝐹 , 𝑝)𝑊 𝐾 ∈ 𝑅
ℎ𝑤
𝑝2

×𝐶

𝐿𝑣(𝐹 ) =𝐷𝑜𝑤𝑛𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝐹 , 𝑝)𝑊 𝑉 ∈ 𝑅
ℎ𝑤
𝑝2

×𝐶

(10)

𝑆𝑅𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑄 ∗ 𝐾𝑇

𝑑ℎ𝑒𝑎𝑑
) ∗ 𝑉 (11)

𝐹 𝑠 = 𝑀𝐿𝑃 (𝐿𝑁(𝐹 𝑠)) + 𝐹 𝑠 (12)
𝑔𝑙 𝑟 𝑟
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Fig. 4. Global and channel attention module.
Where 𝐿𝑁 stands for layer normalization, 𝑑ℎ𝑒𝑎𝑑 means the dimen-
sion of each head in the multi-head attention mechanism is set to
64 in the experiment. 𝑊 𝑄∕𝐾∕𝑉 represent three learnable matrices for
obtaining query, key and value with different weights. During the
calculation process, the key and value are down-sampled to reduce the
amount of calculation.

In order to obtain the relationship 𝐹 𝑠
𝑐ℎ on the channel dimension

of the feature map, an additional branch is added to the original
transformer structure for calculating channel attention:

𝑍𝑠
𝑟 = 1

𝐻 ×𝑊

𝐻
∑

𝑖=1

𝑊
∑

𝑗=1
𝐹 𝑠
𝑟 (𝑖, 𝑗) (13)

𝐹 𝑠
𝑐ℎ = 𝜎(𝑊2𝛿(𝑊1𝑍

𝑠
𝑟 )) (14)

𝑌 𝑠 = 𝐵𝑁(𝐶𝑜𝑛𝑣1×1(𝐹 𝑠
𝑐ℎ ⊙ 𝐹 𝑠

𝑔𝑙)) + 𝐹 𝑠
𝑟 (15)

Where 𝑊1 and 𝑊2 represent the two parameters of the fully con-
nected layer. 𝐹 𝑠

𝑔𝑙 and 𝐹 𝑠
𝑐ℎ perform feature fusion through element-wise

multiplication and 1 × 1 convolution, and add skip connections at the
same time.

When the GCA module acts on the third and fourth layer feature
map 𝑋3

𝑟 and 𝑋4
𝑟 , an additional 3 × 3 convolutional layer (as shown

in the dashed box) and batch normalization are used to change the
channel dimension of the feature map 𝑌 𝑠 to make it equal to the
number of channels at the time of input for subsequent multi-scale
feature fusion, and finally use the Relu activation function to obtain
the final output:

𝑌 𝑠 = 𝛿(𝐵𝑁(𝐶𝑜𝑛𝑣3×3(𝑌 𝑠)) +𝑋𝑠
𝑟 ) (16)

In the second branch, the feature maps from the RGB branch are
fused before extracting features at different stages. To fuse the feature
maps of different scales, 𝑌 𝑠 will be up-sampled so that they have to the
same scale. The fusion feature 𝐹 𝑘

𝑓𝑢𝑠𝑖𝑜𝑛 is expressed as following:

𝐹 𝑘
𝑓𝑢𝑠𝑖𝑜𝑛 =

4
∑

𝑠=𝑘+1
𝑈𝑝𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔((𝐵𝑁(𝐶𝑜𝑛𝑣1×1(𝑌 𝑠)))) 0 ≤ 𝑘 ≤ 3 (17)

4. Experiments

We conducted extensive experiments on the OPIXray (Wei et al.,
2020) dataset and PIDray (Wang et al., 2021c) dataset, compared
the proposed method with several state-of-the-art methods, and then
demonstrated the effectiveness of the proposed module in the method
by ablation study.
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4.1. Datasets

We evaluate the proposed network on two prohibited items detec-
tion datasets. One is OPIXray Dataset. It contains 5 categories (Folding
Knife (FO), Scissor (SC), Straight Knife (ST), Multi-tool Knife (MU) and
Utility Knife (UT)), including 7109 train images and 1776 test images.

The other is perfermed on PIDray Dataset. It contains 12 categories
(Baton, Pliers, Hammer, Power-bank, Scissors, Wrench, Gun, Bullet,
Sprayer, Hand-Cuffs, Knife, Lighter), including a training set of 29,457
images and a test sets of 18,220 images, where the test sets is divided
into easy, hard and hidden according to the difficulty of prohibited
items detection. Hidden mode indicates that the prohibited item in
the image is intentionally hidden. The results of each test set and the
average of the three sets are recorded.

4.2. Implementation details

We employ the MMDetection (Chen et al., 2019) toolkit to imple-
ment our method, which is executed on a machine with NVIDIA TITAN
RTX 24 GB. For the sake of fairness, all methods are trained with the
train set, and the test set is used to evaluate. The proposed FDTNet
uses ResNeXt101 as the backbone. Resize image to 512 × 512, and the
entire network is trained with the stochastic gradient descent (SGD)
algorithm with a momentum of 0.9 and a weight decay of 0.001. We
train detectors for 12 epochs. The initial learning rate is set to 0.001
and the batch size is set to 4. Other parameters are the same as the
default settings in MMDetection. After adjusting the input size of the
image, the training settings used remain unchanged.

4.3. Evaluation metrics

For OPIXray, we adopt the evaluation metric in the article of
OPIXray. For PIDray, we use COCO (Lin et al., 2014) evaluation metrics
and calculate the mean precision (𝑚𝐴𝑃 ). The bounding boxes are
first ranked according to the confidence scores. The Intersection over
Union (IoU) of each bounding box is calculated. The 𝑚𝐴𝑃 score is
calculated according to the different IoU thresholds set. 𝑚𝐴𝑃 represents
the mean average precision computed over the 10 IoU thresholds of
0.5:0.05:0.95, which is the primary challenge metric. 𝑚𝐴𝑃50 represents
the mean average precision computed at a single IoU threshold of 0.5.

4.4. Result and analysis

In order to verify the effectiveness of the method proposed in this
paper, we first conducts experiments on the OPIXray dataset, and
compares it with several existing detection methods for prohibited
items in X-ray images, as shown in Table 1. Among them, the size of all
experimental input images is 512 × 512. Meanwhile, since the dataset



Engineering Applications of Artificial Intelligence 133 (2024) 108076Z. Zhu et al.
Table 1
Results of different detectors on the OPIXray dataset.

Method FO ST SC UT MU 𝑚𝐴𝑃50

SSD (Liu et al., 2016) 76.91 35.02 93.41 65.87 83.27 70.90
SSD+DOAM (Wei et al., 2020) 81.37 41.50 95.12 68.21 83.83 74.00
SSD+LIM (Tao et al., 2021) 81.40 42.40 95.90 71.20 82.10 74.60
TST (Hassan and Werghi, 2020) 80.24 56.13 89.34 72.89 78.02 75.32
Cascade R-CNN+IEFPN (Wang et al., 2021a) 86.00 70.22 89.90 78.09 75.20 79.88
Faster R-CNN+IEFPN (Wang et al., 2021a) 86.39 64.18 88.74 82.20 87.16 81.73
FCOS (Tian et al., 2019) 86.41 68.47 90.22 78.39 86.60 82.02
FDTNet(ours) 87.90 60.20 96.10 78.90 87.10 82.04

Tensor pooling-driven (Hassan et al., 2022)a 85.28 76.49 88.03 80.62 89.41 83.96
FDTNet(ours)a 89.10 70.10 96.60 84.80 90.50 86.20

EAOD-Net (Ma et al., 2022)b 89.60 76.10 90.70 83.20 89.20 85.76
MCIA-FPN (Wang et al., 2022)b 89.08 74.48 89.99 86.13 89.75 85.89
POD-F-X (Ma et al., 2023)b 89.40 78.70 90.60 83.30 88.70 86.10
FDTNet(ours)b 91.50 74.60 97.60 85.20 91.20 88.02

a Indicates that the input size of the experiment is adjusted from 512 × 512 to 576 × 768.
b Indicates that the input size of the experiment is adjusted from 512 × 512 to 1333 × 800.
does not have annotations for semantic segmentation, the Cascade
R-CNN detection framework that does not include the Mask branch
is used. Due to the different sizes of the input images set in the
experiments of different papers, for the sake of fairness, the methods
marked with * and ** in the experimental results indicate that the size
of the training image is 576 × 768 and 1333 × 800 respectively, and the
aspect ratio of the image is maintained during the adjustment process.
As the size of the input image becomes larger, the detection effect is
improved to a certain extent. It can be seen from

Table 1 that under the input condition of 512 × 512, the method
in this chapter has achieved the best performance in the two cat-
egories of folding knife (FO) and scissors (SC) and the average of
five categories 𝑚𝐴𝑃50, and is 8.04% higher than the DOAM method
proposed on the OPIXray dataset. When the size of the input image is
expanded to 1333 × 800, the detected 𝑚𝐴𝑃50 is improved by 5.98%.
The proposed method achieves state-of-the-art performance for the
scissors (SC) category under three input sizes. The Tensor pooling-
driven algorithm (Hassan et al., 2022) highlights the contour features of
prohibited items by using the tensor pooling module to generate multi-
scale tensor maps. The MCIA-FPN network (Wang et al., 2022) uses
average pooling and standard pooling to obtain the material features
of prohibited items in the image, uses convolution to establish local
cross-channel interactions, and converts material weights into channel
weights. Compared with MCIA-FPN, the method in this paper achieves
the best results in five results.

It is worth noting that in certain scenarios, FDTNet outperforms
certain models with larger input image sizes of 1333 × 800 when the
input image size is set to 576 × 768. This superiority can be attributed
to our focus on not only extracting RGB features from the image but
also leveraging the dual-stream architecture to extract features from
frequency-enhanced feature maps. Additionally, the introduction of
GCA enhances the frequency domain features that are more relevant
to X-ray images through the attention mechanism in the spatial and
channel dimensions. This means that while expanding the receptive
field, FDTNet also preserves the fine-grained feature representation of
frequency features.

In the OPIXray dataset, the test set is divided into OL1 (no occlusion
or slight occlusion), OL2 (partial occlusion) and OL3 (severe occlusion
or complete occlusion) according to the degree of occlusion. Table 2
records the test results of the method proposed in this chapter in three
test sets with different occlusion levels, indicating that the method
proposed in this chapter can achieve a certain degree of improvement
regardless of the occlusion level.

The data in Table 3 are experiments conducted on the PIDray
dataset. Since there are few studies on the PIDray dataset, the methods
in this chapter are first compared with some of the most common
6

target detectors. The data in the experiment are retrained owned. It
Table 2
Detection results of OPIXray dataset under different occlusion levels.

Method OL1 OL2 OL3

SSD (Liu et al., 2016) 75.45 69.54 66.30
SSD+DOAM (Wei et al., 2020) 77.87 72.45 70.78
Tensor pooling-driven (Hassan et al., 2022) 79.46 73.82 72.91
MCIA-FPN (Wang et al., 2022) 82.24 81.71 79.58
Faster R-CNN+IEFPN (Wang et al., 2021a) 82.49 80.82 80.49
FDTNet(ours) 82.60 82.30 80.60

can be seen that the FDTNet detection network designed in this paper
achieves the best detection performance and segmentation performance
on all test sets. Compared with the SDANet network proposed on
the PIDray dataset, the method in this chapter improves the average
results of the three test sets by 6.6%, where the experimental data
comes from Ref. Wang et al. (2021c). Both the method proposed in
this chapter and CBNetV2 use two backbone networks without shared
parameters (such as ResNeXt101), and both use Cascade Mask R-CNN
as the detection framework. The superior performance of the CBNetV2
backbone network is illustrated by comparison. Meanwhile, the method
proposed in this chapter improves the detection 𝑚𝐴𝑃 on the simple test
set by 1.2% compared with the original CBNetV2, and the average 𝑚𝐴𝑃
on the three test sets increases by 0.7%. Relevant metrics for semantic
segmentation also show significant improvements, from 55.4% 𝑚𝐴𝑃
to 56.1%. Experimental results demonstrate the effectiveness of the
proposed method. The parameters of the model are 198.58M, and when
the input image size is 512 × 512, the detection speed can reach 13.3
frames per second. During the security check process, it can meet the
needs of real-time detection.

Since the PIDray dataset was proposed in SDANet, we chose SDANet
for the comparison of detection results. Fig. 5 shows the comparison
between our method and SDANet in terms of detection results and
segmentation results, as well as the visualization of feature maps in the
final stages of the two branches. The first column in the figure shows
the ground truth annotations of prohibited items, the second column
shows the prediction results of SDANet, and the third column shows the
prediction results of our method. By comparing the detection results, it
can be seen that our method has higher accuracy without generating
false positive samples.

The fourth column in Fig. 5 displays the visualization of the RGB
branch feature maps in our proposed method, and the last column
shows the visualization of the feature maps after frequency enhance-
ment. By visualizing the feature maps extracted by the two branches
in the final stages, it can be seen that after frequency domain fea-
ture enhancement, the network’s attention can be more significantly
focused on the region where prohibited items are located, indicating

that the importance of frequency domain features is stronger than RGB
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Table 3
Results of different detectors on the PIDray dataset.

Method Detection 𝑚𝐴𝑃 Segmentation 𝑚𝐴𝑃

Easy Hard Hidden Overall Easy Hard Hidden Overall

FSAF (Zhu et al., 2019) 65.2 59.0 48.0 56.7 – – – –
RetinaNet (Lin et al., 2017) 66.4 58.1 45.8 56.8 – – – –
ATSS (Zhang et al., 2020) 69.0 61.8 48.0 59.6 – – – –
Faster R-CNN (Ren et al., 2015) 69.4 62.0 48.1 59.8 – – – –
TOOD (Feng et al., 2021) 68.5 63.8 48.9 60.4 – – – –
VFNet (Zhang et al., 2021) 70.3 62.8 48.6 60.6 – – – –
Mask R-CNN (He et al., 2017) 70.7 63.5 49.6 61.3 61.4 53.5 39.0 51.3
SDANet (Wang et al., 2021c) 71.2 64.2 49.5 61.6 59.9 52.0 37.4 49.8
Co. Dist.+TOOD (Wei et al., 2024) 72.7 64.8 49.5 62.3 – – – –
Cascade R-CNN (Cai and Vasconcelos, 2018) 72.3 65.4 50.1 62.6 – – – –
Cascade Mask R-CNN (Cai and Vasconcelos, 2018) 74.3 67.3 53.4 65.0 62.4 54.7 40.8 52.6
CBNetV2 (Liang et al., 2021) 76.0 69.3 57.2 67.5 64.3 57.0 44.9 55.4
FDTNet(ours) 77.2 69.6 57.9 68.2 65.2 57.3 45.7 56.1
Fig. 5. Display of prohibited items detection results and visualization of feature maps.
features for X-ray images. In other words, by integrating the multi-scale
features of the RGB branch enhanced by the GCA module, the model
performance is improved and it is clear that the frequency branch pays
more attention to the position information and features of the detected
objects.

Fig. 6 presents detailed visualization results of our model on eigh-
teen samples from the hard partition of the PIDray test set. For each
sample, we display the predicted bounding box, class, and score results
for prohibited object detection. Furthermore, we use yellow dashed
boxes to highlight the prediction of samples with severe object occlu-
sion and complex background information. It is worth noting that our
model successfully predicts even those objects that are barely visible in
the X-ray images.

4.5. Ablation study

We explore the effect of different modules on the proposed network
performance through three ablation experiments.
7

Effects of GCA module and FAM module: To evaluate the effec-
tiveness of our proposed GCA module and FAM module, we conducted
various design experiments. The first row of Table 4 demonstrates that
when both modules are used together, the frequency information from
the FAM module can effectively combine with the features from the
RGB stream through the GCA module, resulting in the best detection
performance. In the second row of Table 4, we removed the FAM
module, which led to repetitive or redundant features extracted from
the two streams. This resulted in a decrease of 0.7 PIDray overall mAP
and 1.2 OPIXray OL3 mAP compared to the first row. By replacing
the GCA module with a direct up-sampling and summing operation (as
observed in the third row of Table 4), we observed that the proposed
GCA module contributed to a gain of 1.2 PIDray overall mAP and
2.2 OPIXray OL3 mAP compared to the first row. In the fourth row
of Table 4, we removed both the GCA module and FAM module
simultaneously, resulting in a decrease of 1.9 PIDray overall mAP and
4.3 OPIXray OL3 mAP compared to the first row.



Engineering Applications of Artificial Intelligence 133 (2024) 108076Z. Zhu et al.

T
E

o
s
O
h
a
m
f
a
o
P
e
t
b
d

f
f

Fig. 6. More visualizations of the proposed FDTNet for prohibited object detection.
Table 4
Effectiveness of different modules.

GCA FAM PIDray (𝑚𝐴𝑃 ) OPIXray (𝑚𝐴𝑃50)

Easy Hard Hidden Overall OL1 OL2 OL3

✓ ✓ 77.2 69.6 57.9 68.2 82.6 82.3 80.6

✓ × 76.2 (−1.0) 69.0 (−0.6) 57.3 (−0.6) 67.5 (−0.7) 82.8 (+0.2) 78.8 (−3.5) 79.4 (−1.2)
× ✓ 75.7 (−1.5) 69.0 (−0.6) 56.3 (−1.6) 67.0 (−1.2) 82.7 (+0.1) 80.8 (−1.5) 78.4 (−2.2)
× × 74.4 (−1.8) 68.1 (−1.5) 55.4 (−2.5) 66.0 (−1.9) 80.6 (−2.0) 77.1 (−5.2) 76.3 (−4.3)
Table 5
Effectiveness of different branches of GCA.

Global Channel PIDray (𝑚𝐴𝑃 ) OPIXray (𝑚𝐴𝑃50)

attention attention Easy Hard Hidden Overall OL1 OL2 OL3

✓ ✓ 77.2 69.6 57.9 68.2 82.6 82.3 80.6

✓ × 76.0 (−1.2) 69.0 (−0.6) 57.6 (−0.3) 67.5 (−0.7) 82.5 (−0.1) 81.8 (−0.5) 79.6 (−1.0)
× ✓ 76.6 (−0.6) 69.7 (+0.1) 57.1 (−0.8) 67.8 (−0.4) 82.5 (−0.1) 81.0 (−1.3) 78.9 (−1.7)
× × 75.7 (−1.5) 69.0 (−0.6) 56.3 (−1.6) 67.0 (−1.2) 82.7 (+0.1) 80.8 (−1.5) 78.4 (−2.2)
able 6
ffectiveness of GCA position.

PIDray (𝑚𝐴𝑃 ) OPIXray (𝑚𝐴𝑃50)

Easy Hard Hidden Overall OL1 OL2 OL3

(a) 77.2 69.6 57.9 68.2 82.6 82.3 80.6
(b) 76.4 (−0.8) 68.9 (−0.7) 58.4 (+0.5) 67.9 (−0.3) 82.4 (−0.2) 82.6 (+0.3) 80.1 (−0.5)
s
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Effects of different branches of GCA: By comparing the results
f the first and second rows in Table 5, it is evident that there is a
ignificant decrease in both PIDray overall mAP (−0.7) and OPIXray
L3 mAP (−1.0) when the channel attention module is removed. This
ighlights the importance of inter-channel interactions in achieving
ccurate detection. The model’s ability to integrate information from
ultiple channels in the entire 2D space is crucial for optimal per-

ormance. Furthermore, upon removing the global attention module
nd comparing the results of the first and third rows in Table 5, we
bserved that the proposed global attention contributed to a gain of 0.4
IDray overall mAP and 1.7 OPIXray OL3 mAP. These findings further
mphasize the significance of both the channel attention module and
he global attention module in improving the model’s performance
y facilitating effective interactions and information integration across
ifferent channels and spaces.
Effects of GCA position: As shown in Fig. 7(a), the feature map 𝑋𝑠

𝑟
rom the first backbone will be used in two branches. One is used for
eature fusion with feature maps of other scales and transmitted to the
8

i

econd backbone (blue branch). To improve the ability of RGB branch
eature extraction, we input 𝑋𝑠

𝑟 into subsequent detection network
pink branch). Subsequent detection network includes FPN, RPN and
etection head. During the experiment, we consider using the GCA
odule to enhance the feature map input to the subsequent detection
etwork, so we changed the position of the GCA module, as shown
n Fig. 6(b). As shown in Table 6, although method (b) enhances the
eature maps of both branches, it results in a decrease in mAP for both
he easy and hard sets of PIDray, as well as OL1 and OL2 of OPIXray,
ompared to method (a). In conclusion, method (a) performs better,
hich is why we chose to use it in our experiment.
Effects of loss coefficient: Table 7 presents the ablation experi-

ental results for a single loss weighting coefficient in the detection
erformance of FDTNet. Our observations reveal that an excessively
arge coefficient for 𝐿𝑎𝑠𝑠𝑖𝑠𝑡

𝑡𝑜𝑡𝑎𝑙 can lead to convergence issues in the net-
ork. However, within a reasonable range, the detection performance

s not significantly affected by the coefficient.
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Table 7
Effects of loss coefficient.
𝜆 PIDray (𝑚𝐴𝑃 ) OPIXray (𝑚𝐴𝑃50)

Easy Hard Hidden Overall OL1 OL2 OL3

0.5 77.2 69.6 57.9 68.2 82.6 82.3 80.6

0.25 76.9 (−0.3) 69.1 (−0.5) 57.1 (−0.8) 67.7 (−0.5) 82.5 (−0.1) 82.0 (−0.3) 80.1 (−0.5)
0.85 76.5 (−0.7) 68.8 (−0.8) 57.3 (−0.6) 67.5 (−0.7) 82.4 (−0.2) 82.1 (−0.2) 80.0 (−0.6)
1.2 76.0 (−1.2) 68.1 (−1.5) 56.8 (−1.1) 67.0 (−1.2) 81.1 (−1.5) 81.0 (−1.3) 79.3 (−1.3)
2.0 / / / / / / /
s
c
a
c
n
w
a

C

–
–
V
P
S

D

i
i

D

A

c
t
C

R

C

C

C

C

D

D

F

able 8
omparison of inference complexity and parameters.
Method Parameters (MB) GFLOPs

Faster R-CNN (Ren et al., 2015) 43.51 218.91
Sparse R-CNN (Sun et al., 2021) 128.70 232.18
POD-F-X (Ma et al., 2023) 119.67 337.44
FDTNet(ours) 66.17 207.94

Fig. 7. Different positions of GCA.

.6. Inference complexity

To demonstrate the superior detection speed of FDTNet, we have
rovided a comparison of computational complexity and model param-
ters for different object detection methods in

Table 8. GFLOP and the number of parameters are commonly used
s indicators of a model’s computational complexity. It is evident from
he table that our proposed FDTNet has lower computational com-
lexity and model parameters compared to existing object detection
ethods.

. Conclusion

In this paper, we propose a dual-stream frequency-aware network
o combine the RGB feature and the frequency feature of the image
o detection prohibited items. We design a frequency-aware module
FAM) to focus on the frequency information of the prohibited items,
nd use SRM filter to extract the high-frequency in the X-ray image.
eanwhile, in order to better combine the feature maps from RGB

ranch, the global and channel attention module (GCA) is used to
nhance the representation of the feature map. Experiments on the
IDray and OPIXray dataset demonstrate the superiority of the method.
ompared with other algorithms, the proposed FDTNet performs well

n detection and segmentation evaluation.
Although there has been some progress in this study, the persistent

hallenge of dealing with hard samples, especially those with random
9

tacking and placement in X-ray images, remains. The existence of these
hallenging examples continues to hinder the overall performance of
lgorithms and limit their full potential. Moving forward, we intend to
onduct further research on hard and hidden test sets to improve the
etwork’s ability to adapt to various environments. Additionally, we
ill gradually enhance the theoretical and practical framework of this
lgorithm.
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