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TransMRE: Multiple Observation Planes
Representation Encoding With Fully Sparse Voxel

Transformers for 3-D Object Detection
Ziming Zhu , Yu Zhu , Member, IEEE, Kezhi Zhang , Hangyu Li , and Xiaofeng Ling

Abstract— The effective representation and feature extraction
of 3-D scenes from sparse and unstructured point clouds pose
a significant challenge in 3-D object detection. In this article,
we propose TransMRE, a network that enables fully sparse
multiple observation plane feature fusion using LiDAR point
clouds as single-modal input. TransMRE achieves this by sparsely
factorizing a 3-D voxel scene into three separate observation
planes: XY , X Z, and Y Z planes. In addition, we propose Obser-
vation Plane Sparse Fusion and Interaction to explore the internal
relationship between different observation planes. The Trans-
former mechanism is employed to realize feature attention within
a single observation plane and feature attention across multiple
observation planes. This recursive application of attention is done
during multiple observation plane projection feature aggregation
to effectively model the entire 3-D scene. This approach addresses
the limitation of insufficient feature representation ability under
a single bird’s-eye view (BEV) constructed by extremely sparse
point clouds. Furthermore, TransMRE maintains the full sparsity
property of the entire network, eliminating the need to convert
sparse feature maps into dense feature maps. As a result, it can be
effectively applied to LiDAR point cloud data with large scanning
ranges, such as Argoverse 2, while ensuring low computational
complexity. Extensive experiments were conducted to evaluate the
effectiveness of TransMRE, achieving 64.9 mAP and 70.4 NDS
on the nuScenes detection benchmark, and 32.3 mAP on the
Argoverse 2 detection benchmark. These results demonstrate that
our method outperforms state-of-the-art methods.

Index Terms— 3-D object detection, autonomous driving, deep
learning, LiDAR, multiple observation planes representation
encoding, point cloud, voxel feature factorizing.

I. INTRODUCTION

L iDAR-BASED 3-D object detection plays a crucial role
in the field of computer vision, finding applications in

autonomous driving and robotics. However, one of the main
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challenges facing this task is the ability to effectively represent
3-D scenes and extract object attributes efficiently from sparse
and unstructured point clouds. To address this challenge, sev-
eral methods [1], [2], [3] employ PointNet-like networks [4],
[5] to extract 3-D object properties. While these approaches
have shown significant advancements, they also introduce a
substantial computational complexity in terms of point sam-
pling and grouping. Consequently, these methods are not well-
suited for handling large-scale autonomous driving scenes.

To achieve efficient 3-D object detection, grid-based meth-
ods in the 2-D BEV space have been proposed. These
methods utilize a backbone and neck architecture similar to
SECOND [6] for extracting spatial voxel features. However,
the backbone and neck of SECOND-like methods [7], [8],
[9], [10], [11] store spatial representation using a 3-D voxel
grid, consuming significant storage and computation resources.
To address this, the sparse 3-D voxel grid is compressed into
a dense 2-D BEV grid, reducing storage and computation to
an area-based proportion. However, this compression method
wastes storage space and computation, and crucial geometric
information in the height dimension is lost.

In Fig. 1, we visualize point clouds and images for typical
cases in the autonomous driving scenario. It is evident that
a common situation arises where the foreground objects that
need to be detected are occluded by other background objects
directly above them. Consequently, previous second-like grid-
based methods struggle with objects exhibiting complex and
diverse geometry.

Our proposed method aims to enhance object detection
by incorporating multiple observation plane geometric infor-
mation into spatial features. Building upon NeRF-related
work [12] such as TensoRF [13] and MERF [14], by decou-
pling 3-D voxel features into three pairwise orthogonal planes
using sparse dimensionality reduction, we generate distinct
features for different voxels while reducing storage space
and computation requirements. Sparse self-attention within
each observation plane enables feature fusion, while sparse
cross-attention between pairwise observation planes facili-
tates feature interactions. Integrating features from multiple
observation planes during the extraction process create richer
representations for precise object recognition and localization
in complex scenes. We list our contributions as follows:

1) We sparsely factorize the 3-D feature space into pairwise
orthogonal XY , X Z , and Y Z planes. Next, we divide
and sectionalize the sparse feature maps based on
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the 3-D projection relationship. We then reconstruct
the features into voxels using voxel reconstruction
querying (VRQ). This approach reduces computational
complexity and storage requirements, as they are only
proportional to the area. And, it ensures a complete
description of the 3-D space.

2) We propose a new module called multiple observa-
tion planes representation encoding (MRE) to improve
spatial perception. MRE employs the transformers
mechanism, enabling effective feature attention within a
single observation plane and across multiple observation
planes, based on the 3-D projection relationship. This
enhances spatial perception at each interaction level.

3) The proposed method was evaluated using the nuScenes
dataset and the Argoverse 2 dataset. Competitive results
were achieved on both datasets, showcasing the effec-
tiveness of TransMRE. On the nuScenes test server,
TransMRE attained a detection mAP of 64.9 and an
NDS of 70.4. On the Argoverse 2 validation set,
TransMRE achieved a detection mAP of 32.3. These
results surpass those of the state-of-the-art methods.

The rest of this article is organized as follows. Section II
reviews the relevant research findings closely related to this
article. Section III provides a detailed overview of the pro-
posed TransMRE. Section IV presents experimental results to
validate the effectiveness of our approach. Finally, Section V
concludes this article.

II. RELATED WORK

The primary approaches utilized in previous grid-based 3-D
detection research involving LiDAR point cloud data is voxel-
based, pillar-based, and point-based feature representations.

A. Voxel-Based Spatial Feature
VoxelNet [15] is a pioneering study in end-to-end 3-D

detection. SECOND [6] enhances performance and reduces
computational overhead by using 3-D sparse convolution. Cen-
terPoint [16] refines SECOND’s methodologies by employing
a single positive cell for each detected object, streamlining
detection pipelines and optimizing computations in crowded
scenes. VISTA [17] improves object recognition by fus-
ing 3-D feature maps from BEV and range view (RV).
FocalsConv [18] selectively focuses on foreground information
to enhance detection accuracy during the learning process.
CenterFormer [19] improves bounding box prediction accu-
racy by aggregating features around the center candidate
and introducing Transformers [20]. VoxelNeXt [21] enables
the detection of 3-D objects solely through sparse voxel
features, eliminating the need for sparse-to-dense conversion.
While these methods show promise in object detection, they
lack effective utilization of multiview geometric information,
potentially compromising accuracy and performance.

B. Pillar-Based Spatial Feature
PointPillars [22] is a pillar-based method that utilizes

PointNets [4] to encode point features. These features are
then transformed into a pseudo-image in BEV using pooling

Fig. 1. Visualization of point clouds and images for three cases in the
nuScenes dataset. The first three rows show the perspective views of the
point clouds from the planes perpendicular to the XY plane [i.e., bird’s eye
view (BEV)], the X Z plane, and the Y Z plane, respectively. The fourth row
displays the camera images capturing the cases. For objects with occlusions
from above (such as the roof or barrier above pedestrians and bicycles in cases
1 and 2, and the tree leaves obstructing the view above the truck in case 3),
these occlusions can interfere with the representation of features in the XY
plane, indicating that modeling spatial representations solely from the BEV
perspective is incomplete.

operations. Infofocus [23] enhances PointPillars [22] by intro-
ducing a second-stage attention network for precise proposal
refinement. PillarNet [24], based on the CenterPoint-pillar [16]
architecture, incorporates a ResNet18 [25] structure with
2-D sparse convolution for efficient BEV feature extraction.
Although pillar-based networks achieve accuracy comparable
to voxel-based methods in 3-D object detection tasks, they
suffer from a loss of critical 3-D geometric information
during transformation processes. This loss poses challenges in
accurately localizing objects and understanding their spatial
relationships within the scene.

C. Point-Based Spatial Feature
PointNet [4] and PointNet++ [5] learn point features from

raw point clouds. F-PointNet [26] and F-Conv [27] aggregate
features from frustums. PointRCNN [1] generates proposals
using PointNet++ [5] and refines bounding boxes with point
cloud RoI pooling. STD [28] transfers sparse point features
into a dense voxel representation. 3DSSD [2] introduces a
sampling strategy for a feature and spatial distance fusion.
IA-SSD [29] addresses sampling issues with instance-aware
downsampling strategies. FSD [30] employs point clustering
and group correction techniques inspired by VoteNet [3].
Point-based methods learn features directly from raw point
sets, avoiding sampling information loss during voxelization.
However, they have limitations in learning capacity and can be
time-consuming and inefficient, affecting overall performance.
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Fig. 2. Overall architecture of the proposed TransMRE. Our approach takes a LiDAR point cloud as input for 3-D object detection, where a serial fusion
module with feature attention within a single plane (left below) and feature attention across multiple planes (right below) is proposed for the multiple
observation planes feature encoding and interaction. The feature maps are color-coded to represent different spatial perspectives: gray corresponds to the voxel
view, blue to the XY plane, red to the X Z plane, and green to the Y Z plane.

III. METHOD

A. Framework Overview
Fig. 2 illustrates the structure of TransMRE, which proposes

the incorporation of a Transformer-based multiple observation
planes encoder. This encoder utilizes the Transformer mech-
anism to enhance the point cloud features in the multiple
observation planes. In TransMRE, we propose incorporating
MRE and VRQ to efficiently extract and reconstruct multiple
observation plane features. Each observation plane represents
a mesh cell feature that corresponds to one of the three
planes, capturing specific observation plane information from
the associated pillar area. The feature attention within a single
observation plane mechanism focuses on encoding features
within the same observation plane, by interacting with obser-
vation plane features. Conversely, the feature attention across
multiple observation planes enables direct interaction between
observation plane features across different observation planes,
thereby incorporating richer contextual information from all
perspectives.

To minimize the computational demands and parameter
count of the entire model, we have implemented a reduction
in the number of sparse convolutional layer stacks within
the voxel branches. This adjustment effectively controls the
computational load and parameter size, resulting in a more
efficient and streamlined model overall.

B. Multiple Observation Planes Representation Encoding
1) Factorized Observation Plane Generation: To obtain

a comprehensive observation of the scene from different

perspectives and overcome limitations, such as object occlu-
sion resulting from solely extracting BEV features, we employ
a method of factorizing the voxel features into separate XY ,
X Z , and Y Z planes. This factorization allows us to preserve
the voxel features while constructing the three observation
plane features, ensuring a more accurate representation of the
scene.

The implementation of factorized observation plane genera-
tion is completely based on voxels. In 3-D voxel feature maps,
it is often the case that certain channels contain redundant
features that provide little benefit for prediction. To address
this, we selectively choose the features F1

MRE from a subset
of channels, with a proportion of m, in each nonempty voxel
feature vector before the first downsampling stage for the plane
factorization process

Fl
MRE, Fl

vox =

{
Fl

0:m→Cl
vox

, Fl
m→Cl

vox:
, if l = 1

Fl , Fl , otherwise
(1)

where l ↑ [1, 2, 3, 4] represents the feature scale stage, and
there are three downsampling stages in total corresponding to
four feature scales. Fl is the feature of each original nonempty
voxel and Cl

vox is the feature dimension of each original
nonempty voxel.

The 3-D object detectors commonly employed in various
methods (such as papers [6], [16], and [22]) utilize compres-
sion techniques to convert sparse 3-D voxel features into dense
2-D maps. This conversion is accomplished by transform-
ing sparse features into dense ones and integrating altitude
information (along the z-axis) into the channel dimension.
However, these operations necessitate additional memory and
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Fig. 3. Factorized observation plane generation. Given a 3-D sparse tensor,
we filter out all nonempty voxels’ unique 2-D coordinates relative to the 2-D
plane. We then sum up the feature vectors within the pillar region of each
unique 2-D coordinate in the 3-D sparse tensor as the feature vector of the
new 2-D sparse tensor.

computational resources. To achieve accurate predictions while
minimizing memory and computational requirements, we
employ sparse dimension compression to factorize the features
of each observation plane. This process entails individually
placing voxels on each observation plane and aggregating the
features at corresponding positions to create a 2-D sparse
feature tensor (O X↓Y,l , O X↓Z ,l , and OY↓Z ,l)

Opln,l
= SPT

(
Fpln,l , Ppln,l) (2)

where pln ↑ [X ↓Y, X ↓ Z , Y ↓ Z ], SPT(·, ·) represents sparse
tensor construction function. The construction of O X↓Y,l ,
O X↓Z ,l , and OY↓Z ,l relies on the values of sparse features
and their coordinate indices.

Fig. 3 takes the XY observation plane as an example to
sparsely compress the original nonempty voxels onto a 2-D
sparse feature tensor. Following the sparse dimension com-
pression, the calculation of sparse features (F X↓Y,l , F X↓Z ,l ,
and FY↓Z ,l) and their corresponding coordinate positions
(P X↓Y,l , P X↓Z ,l , and PY↓Z ,l) is performed as follows:

P X↓Y,l
=

{(
xl

p, yl
p, 0

)
| p ↑ Pvox,l}

P X↓Z ,l
=

{(
xl

p, 0, zl
p
)

| p ↑ Pvox,l}

PY↓Z ,l
=

{(
0, yl

p, zl
p
)

| p ↑ Pvox,l} (3)

Fpln,l
=





∑

c↑Aĉ

fc, | ĉ ↑ Ppln,l




, f ↑ Fl
MRE (4)

Aĉ =
{
c | xl

c = xl
ĉ, yl

c = yl
ĉ, zl

c = zl
ĉ, c ↑ Pvox,l} (5)

where Pvox is the 3-D coordinate positions of each original
nonempty voxel.

2) Dividing and Sectionalization: The factorized observa-
tion plane generation structure mentioned above is designed to
compress the sparse 3-D feature voxels into three observation
planes. This is achieved by utilizing the feature map as
the representation of each perspective, allowing for multi-
perspective feature interaction. However, when it comes to
performing feature fusion and interaction for each observation
plane, there is a challenge. The high-resolution nature of each
observation plane feature, which consists of approximately 104

queries in the Argoverse 2 dataset, makes it inefficient and
redundant to compute full-scale attention directly within the

same observation plane. This is mainly due to the significant
computational costs and GPU memory requirements involved.

To overcome this issue, we propose a twofold solution. First,
we propose a dividing scheme that allows us to temporally
divide the full-size feature map into nonoverlapping blocks.
Each patch covers a small block of the feature map. Second,
we implement a sectionalization scheme to group these blocks
based on their projection relationship.

Specifically, in Fig. 4, on the left side, the 2-D sparse
feature maps O X↓Y,l and OY↓Z ,l , with a spatial dimension
of W l

X↓Z/Y↓Z → Hl
X↓Z/Y↓Z , are uniformly divided into g =

n → 1 blocks along the horizontal direction, respectively. Each
block has a spatial dimension of Ŵ l

X↓Z/Y↓Z → Hl
X↓Z/Y↓Z

(assuming W l
X↓Z/Y↓Z = Ŵ l

X↓Z/Y↓Z → n). As for the X–Y
plane, the 2-D sparse feature map O X↓Y,l has a size of
W l

X↓Y → Hl
X↓Y , where both spatial dimensions are of equal

length. We divide it horizontally and vertically into g =

n → 1 blocks and g = 1 → n blocks, with each block having
a spatial dimension of Ŵ l

X↓Y → W l
X↓Y (assuming W l

X↓Y =

Ŵ l
X↓Y → n). In our approach, we maintain a consistent value

of n across all downsampling stages. This ensures that each
divided block can effectively cover the same real-size receptive
field in the sparse feature maps, regardless of their scale.
Consequently, the block spatial dimension varies for each
downsampling stage.

In Fig. 4, on the right side, the entire 3-D voxel space can be
defined as a large cube. Within this space, multiple cube pillar
regions can be projected onto the three observation planes,
covering their corresponding 2-D rectangular regions. To effi-
ciently organize these blocks, we employ a sectionalization
method based on this projection approach. Let us consider
an example with a X Z plane. One of its blocks, DX↓Z ,l

1 ,
belongs to the projection of the same cube as XY plane’s
DX↓Y (v),l

1 . Similarly, for the Y Z plane, one of its blocks,
DY↓Z ,l

1 , belongs to the projection of the same cube as the XY
plane’s DX↓Y (h),l

1 . When these cube projections intersect, they
form a cube pillar block called PLl

(1,1). Consequently, DX↓Z ,l
1 ,

DY↓Z ,l
1 , DX↓Y (v),l

1 , and DX↓Y (h),l
1 are grouped together within

the same section Sl
1. By applying the same projection method,

we can obtain n → n sections. This scheme ensures that blocks
with similar projection relationships are sectionalized together,
highlighting their strong spatial correlation. As a result, the
focus of attention calculation can be concentrated within each
section. Blocks that do not belong to the same projection
relation do not require additional attention calculation, as their
spatial correlation is low.

By applying these schemes, we can effectively address
the computational and memory challenges associated with
computing full-scale attention within the same observation
plane. This approach allows for efficient and optimized feature
fusion and interaction, enhancing the overall performance of
the system.

3) Feature Attention Within Single Observation Plane:
In TransMRE, we leverage feature attention within a single
observation plane to enhance feature fusion within that plane.
To achieve this, we gather sparse features for each plane’s
feature map block within section Sl

i . These sparse features are
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Fig. 4. Dividing and sectionalization approach. To minimize redundant calculations while maintaining accuracy, we implement a process of dividing and
sectionalization on the feature maps of each observation plane. This step aims to streamline the subsequent attention calculation process.

denoted as

Fdvi,l
i =

{
f dvi,l
1,i , . . . , f dvi,l

N dvi,l
i ,i

}
(6)

where dvi ↑ [X ↓Y (h), X ↓Y (v), X ↓Z , Y ↓Z ]. Each block’s
sparse feature in section Sl

i can be represented as a 2-D matrix,
with the shape varying depending on the type of observation
plane (XY plane or X Z /Y Z planes) and each block. This
variation arises because each block is a sparse tensor, and
the number of nonempty pixels within them is not the same.
For instance, in the XY plane representation, the shape is
N X↓Y (h),l

i → Cl and N X↓Y (v),l
i → Cl , while it is N X↓Z ,l

i → Cl

and N Y↓Z ,l
i → Cl for the X Z and Y Z planes, respectively.

Here, C represents the feature dimensionality of nonempty
pixels. It is noteworthy that these 2-D feature tensors are sparse
and satisfy the condition (Wi → Hi ) ↔ Ni . Then, we gather
the position of each nonempty pixel within the block from the
sparse tensor

Pdvi,l
i =

{
pdvi,l

1,i , . . . , pdvi,l
N dvi,l

i ,i

}
↑ RN dvi,l

i →2. (7)

To further facilitate interaction among all sparse voxels
within each observation plane, we calculate feature multihead
self-attention with Nhead heads within the observation plane on
a per-plane basis

PEdvi,l
i = MLP

(
Pdvi,l

i


, for i = 1, . . . , n2 (8)

F̂dvi,l
i = MA

(
Q

(
Fdvi,l

i + P Edvi,l
i



K
(

Fdvi,l
i + PEdvi,l

i


, V

(
Fdvi,l

i



D̂dvi,l
i = SPT

(
F̂dvi,l

i , Pdvi,l
i


(9)

the multihead self-attention mechanism utilizes linear pro-
jection layers, Q(·), K (·), and V (·), to generate query, key,
and value features. To incorporate spatial information into
the attention process, we propose a learnable index-based
2-D position embedding called PE for each nonempty pixel.
This embedding is obtained by mapping the position of the
nonempty pixels through a multilayer perceptron (MLP).

4) Feature Attention Across Multiple Observation Planes:
Our objective is to propagate sparse pixel information at the
plane-level across different observation planes, following the
application of self-attention within each observation plane.
This enables us to capture more comprehensive 3-D spatial

information. To further enhance the fusion of features between
observation planes, we calculate the sparse cross-attention
across multiple planes.

Specifically, in the XY plane, there are divided blocks
DX↓Y (h),l

i in the horizontal direction and divided blocks
DX↓Y (v),l

i in the vertical direction. DX↓Y (h),l
i and DX↓Z ,l

i are
projected from the same 3-D space cube. We calculate the
sparse cross-attention between DX↓Y (h),l

i and DX↓Z ,l
i to obtain

D̂X↓Y (h),l
i after the feature update. Similarly, we calculate the

sparse cross-attention between DX↓Y (v),l
i and DY↓Z ,l

i to obtain
D̂X↓Y (v),l

i after the feature update

F̂ X↓Y (h),l
i = MA

(
Q

(
F X↓Y (h),l

i + PEX↓Y (h),l
i



K
(

F X↓Z ,l
i + PEX↓Z ,l

i


, V

(
F X↓Z ,l

i



D̂X↓Y (h),l
i = SPT

(
F̂ X↓Y (h),l

i , P X↓Y (h),l
i


. (10)

To update the feature DX↓Z ,l
i , we begin by considering the

divided block DX↓Z ,l
i in the X Z plane. This block is projected

from the same 3-D space cube as DX↓Y (h),l
i and DY↓Z ,l

i .
We calculate the sparse cross-attention values for DX↓Y (h),l

i
and DY↓Z ,l

i separately. Next, these values are summed to
obtain the updated feature, D̂X↓Z ,l

i . Similarly, we calculate
the sparse cross-attention values for DX↓Y (v),l

i and DX↓Z ,l
i

individually. These values are then summed to update the
feature, resulting in D̂Y↓Z ,l

i

F̂ X↓Z ,l
i = MA

(
Q

(
F X↓Z ,l

i + PEX↓Z ,l
i



K
(

FY↓Z ,l
i + PEY↓Z ,l

i


, V (FY↓Z ,l

i )


+ MA
(

Q
(

F X↓Z ,l
i + PEX↓Z ,l

i



K
(

F X↓Y (h),l
i + PEX↓Y (h),l

i


, V

(
F X↓Y (h),l

i



D̂X↓Z ,l
i = SPT

(
F̂ X↓Z ,l

i , P X↓Z ,l
i


. (11)

Finally, the divided blocks in each section are reassembled
to form the complete sparse feature maps of each plane.
This is achieved through the reverse operation described in
Section III-B2.

C. Voxel Reconstruction Querying
The primary objective of the factorized multiple observation

plane representation is to deliver a comprehensive description
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Fig. 5. VRQ module. When provided with a specific voxel location, we begin
by projecting its 3-D coordinates onto each of the three axially aligned planes,
XY , X Z , and Y Z planes. Then, we extract the features of each projection
from a sparse 2-D feature map. These extracted features are then combined
and consolidated into a single feature vector.

of the query voxels situated within the 3-D space (x , y, and z).
This is accomplished through the integration of voxel feature
projections onto the XY , X Z , and Y Z planes, following MRE.
We start it after the last downsampling stage. This process is
visually presented in Fig. 5.

To begin the process, we project the voxels onto the XY ,
X Z , and Y Z planes, resulting in the coordinates [(x , y, 0), (x ,
0, z), and (0, y, z)]. Following this, we sample the XY , X Z ,
and Y Z planes at these coordinates to obtain the corresponding
features [ f X↓Y

(x,y,0), f X↓Z
(x,0,z), f Y↓Z

(0,y,z)]:

f X↓Y
(x,y,0) = ID

(
O X↓Y,4, CTX↓Y (x, y, 0)

)

f X↓Z
(x,0,z) = ID

(
O X↓Z ,4, CTX↓Z (x, 0, z)

)

f Y↓Z
(0,y,z) = ID

(
OY↓Z ,4, CTY↓Z (0, y, z)

)
. (12)

By combining these three features with the voxel’s intrinsic
features, we can generate the final feature representation,
denoted as f̂ spatial

(x,y,z)

f spatial
(x,y,z) = SUM

(
f X↓Y
(x,y,0), f X↓Z

(x,0,z), f Y↓Z
(0,y,z)



f̂ spatial
(x,y,z) = CONCAT

(
f spatial
(x,y,z), f vox

(x,y,z)


. (13)

The index function ID(·, ·) is responsible for sampling
the feature vectors from the sparse feature maps of XY ,
X Z , and Y Z based on the provided coordinates. To simplify
the coordinate transformation process, we define a function
denoted as CT(·, ·, ·). Considering that the XY , X Z , and
Y Z planes align with the axes of 3-D space, each projection
function CT(·, ·, ·) only needs to perform a straightforward
index dimensionality reduction on the two associated coordi-
nate systems it encompasses.

D. Detection Head
During training, we assign the nonempty voxel closest to the

center of each labeled the bounding box as a positive sample,
and supervised it with focal loss [31], denoted as LPos. The
overall loss function is defined by weighting the classification,
regression, and IoU costs

LTotal = ω1LPos + ω2LCls + ω3(LReg + L IoU). (14)

Specifically, we directly regress T class scores Sspatial ↑

RN→T and the bounding box from the nonempty sparse voxel
feature F̂ spatial ↑ RN→C . The classification loss is represented
by LCls, which is the cross-entropy loss. For each bounding

box, we predict the position offset (ωx, ωy) ↑ R1→2, the height
z ↑ R1→1, the 3-D sizes (l, w, h) ↑ R1→3, and the rotation
angle (sin(ε), cos(ε)) ↑ R1→2. In addition, for the nuScenes
dataset, we also have a regression vector velocity (vx , vy) ↑

R1→2. The regression loss is denoted as LReg, which is the
L1 loss. To further improve performance, we calculate the
IoU loss (L IoU) between the predicted box and the ground-
truth box [32]. The weighting coefficients of the individual
loss terms are ω1, ω2, and ω3. The entire network is trained
under the supervision of LTotal. Our predictions are made using
a simple MLP layer without the need for complex designs.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics
In this study, we utilize two datasets, namely nuScenes [39]

and Argoverse 2, to evaluate the performance of the proposed
method. These datasets were collected specifically to validate
the performance of LiDAR-based 3-D object detection. They
encompass multimodal data from various sensors, including
LiDAR point cloud and multicamera images. In addition, these
datasets provide corresponding labels for each object to be
detected, which include its category and 3-D bounding box.

The nuScenes dataset [33] consists of 1000 scenes, each
lasting for 20 s, with approximately 1.4 million object
bounding boxes across 40 000 keyframes. It is divided into
700 scenes for training, 150 scenes for validation, and
150 scenes for testing. The dataset is fully annotated with
3-D bounding boxes of 23 classes and eight attributes.

The Argoverse 2 dataset [34] contains 1000 multimodal
data sequences, each containing about 150 frames, totaling
approximately 150 000 frames available for training, valida-
tion, and testing. It is divided into 700 sequences for training,
150 sequences for validation, and 150 sequences for testing.
This dataset provides 3-D cuboid annotations for 26 target
categories. Notably, the perception range of this dataset is
200 m in radius, covering an area of 400 → 400 m.

Mean average precision (mAP) is the most commonly used
performance evaluation metric in object detection tasks, and it
is closely related to precision (prec) and recall (rec). Precision
refers to the ratio of the actual number of positive samples
to the total number of detected positive samples, while recall
refers to the ratio of the detected positive samples to the total
number of actual positive samples. The trends of these two
metrics are usually inversely proportional, as when the recall
is high, false alarms may lower the precision, and when the
precision is high, missed detections may lower the recall. The
calculation formulas for precision (prec), recall (rec), and mAP
are as follows:

prec =
TP

TP + FP

rec =
TP

TP + FN

AP =

 1

0
prec(rec)drec

mAP =
1
T

T∑

i=1

APi (15)
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where TP represents the number of correctly detected positive
samples, FP represents the number of false positive samples
misclassified as positive, and FN represents the number of
missed positive samples. T represents the number of classes.

The nuScenes detection score (NDS) is a metric designed
to evaluate models experimented on the nuScenes dataset.
It builds upon mAP by additionally defining five TP metrics:
average translation error (ATE) represents the Euclidean center
distance in 2-D (measured in meters). The average scale
error (ASE) is calculated as the 3-D intersection over union
(IoU) after aligning orientation and translation (1 ↓ IoU). The
average orientation error (AOE) is defined as the smallest
yaw angle difference between the prediction and the ground
truth (measured in radians). All angles are measured within
a full 360↗ period, except for the barriers class where they
are measured within a 180↗ period. The average velocity error
(AVE) is determined as the absolute velocity error, represented
by the L2 norm of the velocity differences in 2-D (measured in
m/s). The average attribute error (AAE) is defined as 1 minus
the attribute classification accuracy (1 ↓ acc). For each TP
metric, calculate the mean TP metric (mTP) across all classes,
and the calculation formulas for NDS are as follows:

mTP =
1
T

T∑

i=1

TPi

NDS =
1
10



5mAP +

∑

mTP↑TP
(1 ↓ min(1, mTP))



(16)

where TP represents the set of the five mean true positive
metrics.

According to the dataset official settings, we use mAP and
NDS to evaluate the performance of the model on the nuScenes
dataset and mAP to evaluate the performance of the model on
the Argoverse 2 dataset.

B. Implementation Details

The model implementation was trained using four
NVIDIA RTX A6000 GPUs and optimized with the Adam
algorithm [40]. The initial learning rate was set to 10↓3 and
decayed to 10↓4 using a cosine annealing schedule. The weight
decay value was set to 10↓2, and gradients were clipped by a
norm of 35.

For the nuScenes dataset, a batch size of 16 was used, and
the models were trained for 20 epochs. The point cloud range
(PCR) was limited to [↓54, 54 m] for the X - and Y -axes, and
[↓5, 3 m] for the Z -axis in the LiDAR coordinate system.
The voxel size used in the voxelization process for the point
clouds was set to (0.075, 0.075, 0.2 m). Data augmentation
techniques such as random flipping, global scaling, global
rotation, GT sampling [6], and translation augmentations were
applied. Flipping was randomly conducted along the X - and
Y -axes. The rotation angle was randomly selected between
↓45↗ and 45↗. Global scaling was performed by sampling a
factor between 0.9 and 1.1. The translation noise factors were
sampled between 0 and 0.5. It is important to note that GT
sampling was removed in the last five training epochs [41] for
the test submission models.

For the Argoverse2 dataset, the models were trained for six
epochs with a batch size of 16. The PCR was constrained
to [↓200, 200 m] for the X - and Y -axes, and [↓20, 20 m]
for the Z -axis in the LiDAR coordinate system. During the
voxelization process for the point clouds, a voxel size of (0.1,
0.1, 0.2 m) was used. Similar data augmentation techniques
were employed as in the nuScenes dataset, with the exception
that ground-truth sampling was not utilized.

C. Key Findings
In this study, we conducted a comparison between

TransMRE and other state-of-the-art models for 3-D detection
based on point clouds. The results obtained from the nuScenes
test server and the nuScenes validation set are presented in
Tables I and II, respectively. Our TransMRE outperformed
several other detection methods. Notably, when compared
to VoxelNeXt [21], which also utilizes a fully sparse rep-
resentation, our proposed method with a three observation
planes fusion encoder demonstrated significant improvements.
Specifically, we observed an increase of 0.4 mAP and 0.4 NDS
on the nuScenes test server.

We observed that TransMRE exhibited notably higher accu-
racy in detecting pedestrians and traffic cones compared
to other solutions. This can be attributed to the fact that
pedestrian and traffic cone bounding boxes are more suscep-
tible to interference and occlusion issues due to their small
size. By introducing additional observation plane capabilities,
TransMRE enhances the point cloud features associated with
small objects, thereby improving pedestrian and traffic cone
detection performance.

In Fig. 6, we showcase the visualization of TransMRE’s
results on the nuScenes validation set. For each sample,
we project the 3-D object detection bounding box onto both
the LiDAR top view and the six surround camera images.
The results demonstrate that TransMRE effectively detects the
target object in the majority of cases, indicating the accurate
localization of the object through the fusion of multiple
observation planes. However, we did observe a small number
of undetected objects. Further analysis revealed that these
undetected objects had limited or no point clouds within
their ground-truth bounding boxes. Consequently, empty vox-
els were generated, hindering the model’s ability to extract
meaningful features.

D. Long-Range Detection
To fully explore the capabilities of TransMRE, we con-

ducted long-range detection experiments on the Argoverse
2 dataset [34]. Unlike other widely adopted 3-D detec-
tion benchmarks such as WOD [43], nuScenes [33], and
KITTI [44], the Argoverse 2 dataset offers a significantly
longer perception range of 200 m. This allowed us to assess the
performance of TransMRE in detecting objects within a larger
distance. Moreover, the Argoverse 2 dataset presents another
challenge by including objects from 26 different classes,
which poses a long-tail issue. This means that there is an
imbalanced distribution of objects across these classes, making
the detection task more challenging.
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TABLE I
PERFORMANCE OF 3-D OBJECT DETECTION METHODS ON THE NUSCENES TEST SERVER. IN ALL MODELS, ONLY A SINGLE-FRAME POINT CLOUD

IS USED AS INPUT DURING TESTING, WITHOUT ANY ADDITIONAL AUGMENTATIONS OR MODEL ENSEMBLES INCORPORATED. THE OPTIMAL
VALUE FOR EACH METRIC IS INDICATED IN BOLD, WHILE THE SECOND BEST VALUE IS INDICATED WITH AN UNDERLINE

Fig. 6. Visualization of TransMRE on the nuScenes Dataset val set. In the LiDAR top view, the green bounding box corresponds to the ground truth, while
the orange bounding box represents the prediction. On the camera images, all bounding boxes are predictions. Orange boxes indicate car and bus, blue boxes
indicate pedestrian, dark orange boxes indicate truck, red boxes indicate motorcycle and bicycle, and light blue boxes indicate barrier.

TABLE II
PERFORMANCE OF 3-D OBJECT DETECTION METHODS

ON THE NUSCENES VALIDATION SET

In Table III, we present a comparison between TransMRE
and other 3-D object detectors on the Argoverse 2 dataset.

It is evident that TransMRE outperforms VoxelNeXt [21],
FSD [30], and CenterPoint [16] in the average metric,
showcasing its superior performance. Notably, TransMRE
demonstrates significant improvements over VoxelNeXt and
CenterPoint in detecting both tiny objects, such as Pedestrians
and Construction Cones, as well as objects with extremely
large sizes, such as Articulated Buses and School Buses. This
remarkable performance can be attributed to the virtue of
plane-level comprehensive feature extraction in MRE, which
allows TransMRE to effectively capture and leverage the
necessary information for accurate detection.

To showcase the efficiency of TransMRE in long-range
detection, we analyzed by observing the testing latency and
memory usage of VoxelNeXt [21], TransFusion-L [39], and
CenterPoint [16]. We achieved this by restricting the scan
ranges of the input point cloud during model inference,
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TABLE III
PERFORMANCE OF 3-D OBJECT DETECTION METHODS ON THE ARGOVERSE 2 DATASET. IN ALL MODELS, ONLY A SINGLE-FRAME POINT CLOUD IS

USED AS INPUT DURING TESTING, WITHOUT ANY ADDITIONAL AUGMENTATIONS OR MODEL ENSEMBLES INCORPORATED

Fig. 7. Latency and memory usage on the Argoverse 2 validation set
across different detection ranges. These statistics were obtained using a single
NVIDIA RTX A6000 GPU with a batch size of 1. Testing latency was
evaluated using the standard parameter in OpenPCDet.

TABLE IV
COMPARED TO OTHER METHODS IN TERMS OF THE NUMBER OF

PARAMETERS AND COMPUTATIONAL COMPLEXITY, TRANSMRE
DEMONSTRATES BETTER PERFORMANCE AND HIGHER

EFFICIENCY. IT IS WORTH NOTING THAT THE MODEL’S
PARAMETER COUNT REMAINS UNCHANGED AS THE

DETECTION RANGE INCREASES, BUT A GREATER
DETECTION RANGE LEADING TO AN INCREASE

IN VOXEL FEATURE MAP SIZE RESULTS IN
INCREASED COMPUTATIONAL COMPLEXITY

FOR THE MODEL. TRANSMRE EXHIBITS
THE SMALLEST INCREASE IN

COMPUTATIONAL COMPLEXITY

as shown in Fig. 7. The figure demonstrates a significant
increase in latency and memory requirements when applying
dense detectors such as CenterPoint and TransFusion-L to

larger detection ranges. In contrast, TransMRE, being designed
to be fully sparse, exhibits resource needs that are roughly
linear to the number of nonempty voxels. Consequently, its
latency and memory usage only experience a slight increase
as the detection range expands. Table IV demonstrates the
high inference efficiency of TransMRE at detection ranges of
50 and 200 m. This is attributed to our multiple observation
plane factorization and reconstruction strategy, as well as the
fully sparse architecture that avoids densifying feature maps by
making predictions only at the positions of nonempty voxels.

E. Ablation Study
We performed ablation experiments on our individual mod-

ules and parameters on the nuScenes validation set. More
visualizations of the proposed TransMRE for 3-D object
detection is shown in Fig. 8.

1) Factorized Observation Plane Generation: The number
of factorized planes has a significant impact on the perfor-
mance of object detection. This is because each factorized
plane represents a distinct set of spatial information. For
instance, the XY plane signifies BEV information, the X Z
plane represents the vertical perspective space relative to the
ego vehicle’s travel direction, and the Y Z plane captures
the spatial representation observed from the side of the ego
vehicle. In our ablation experiments, as presented in Table V,
we conducted thorough analyses on the number and combi-
nation of factorized planes. Remarkably, we observed that the
highest performance was achieved when TransMRE factorized
all planes and integrated their features while allowing them
to interact. Therefore, we adopted this configuration as the
default setting in our experiments.

TransMRE splits nonempty voxel feature channels based on
the selection ratio m. We examine the impact of this setting in
Table VI, where we vary the selection ratio to 1/8, 1/4, 1/2, 3/4,
and 7/8. We observe that the tradeoff between performance
and latency achieves at its best when the ratio is equal to 1/2.
As a result, we adopt a default selection ratio of 1/2 in our
experiments.

2) Dividing and Sectionalization: TransMRE divides the
2-D sparse feature maps based on the number of blocks,
denoted as n. To assess the impact of n on TransMRE, we
conducted an ablation study. The results are summarized in
Table VII, indicating that the model’s mAP and NDS remain
relatively stable when n is equal to or less than 15. It should
be noted, however, that a slight decrease in the performance
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TABLE V
ABLATION STUDY ON THE NUMBER AND COMBINATION OF FACTORIZED PLANES

Fig. 8. More visualizations of the proposed TransMRE for 3-D object detection.

TABLE VI
EFFECTS OF SELECTION RATIO IN FACTORIZED OBSERVATION PLANE

GENERATION IN OUR PROPOSED FRAMEWORK. THE SELECTION
RATIO REFERS TO THE PROPORTION OF FEATURE CHANNELS THAT

ARE FED INTO THE MRE MODULE. A SMALLER SELECTION
RATIO MEANS THAT FEWER FEATURE CHANNELS ARE

FACTORIZED INTO THREE OBSERVATION PLANES AND
MORE FEATURE CHANNELS ARE RETAINED IN THE

UNDERLYING 3-D TENSOR

of pedestrian and bicycle detection is observed when n is
reduced to 3. This can be attributed to the relatively small

TABLE VII
EFFECTS OF THE NUMBER OF DIVIDED BLOCKS IN OUR PROPOSED

FRAMEWORK. BY DEFAULT, WE SET THE NUMBER OF DIVIDED
BLOCKS (n) TO 15

bounding boxes of pedestrians and bicycles. When the block
spatial dimensions are larger, more noise information tends
to be collected, which can adversely affect the accuracy of
detecting small targets. Consequently, we have set the default
value of n to 15.
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TABLE VIII
EFFECTS OF FEATURE ATTENTION WITHIN SINGLE OBSERVATION PLANE AND FEATURE ATTENTION ACROSS MULTIPLE OBSERVATION

PLANES IN OUR PROPOSED FRAMEWORK. THE FIRST ROW REPRESENTS OUR TRANSMRE WITH DEFAULT SETTINGS,
WHICH SERVES AS A REFERENCE POINT FOR COMPARISON

TABLE IX
ABLATION STUDY ON THE LOSS COEFFICIENT OF THE DETECTION HEAD

3) Feature Attention Within Single Observation Plane: To
evaluate the effectiveness of our proposed feature attention
within a single observation plane, we conducted various design
experiments. In the second row of Table VIII, we removed
the sparse self-attention module, which led to a decrease of
2.1 mAP and 2.5 NDS compared to the first row. By removing
the index-based position embedding in the sparse self-attention
module (as observed in the third row of Table VIII), we found
that the proposed index-based position embedding contributed
to a gain of 0.2 mAP and 0.5 NDS when compared to the first
row. In the fourth row of Table VIII, we replaced the sparse
self-attention module with a dense MLP mixer, resulting in a
slight improvement of 0.1 mAP compared to the first row.
However, we decided not to utilize this setting due to the
requirement of converting the sparse feature maps to dense
feature maps, which would significantly increase subsequent
computation.

4) Feature Attention Across Multiple Observation Planes:
By comparing the results of the first and fifth rows in
Table VIII, it is evident that there is a significant decrease
in both mAP (↓1.3) and NDS (↓1.3) when the sparse
cross-attention module is removed. This highlights the impor-
tance of interplane interactions in achieving accurate detection.
The model’s ability to integrate information from multiple
observation planes in the entire 3-D space is crucial for optimal
performance. We removed the index-based position embed-
ding in the sparse cross-attention module. Upon comparing
the results of the first and sixth rows in Table VIII, we
observed that the proposed index-based position embedding
contributed to a gain of 0.1 mAP and 0.2 NDS. These
findings further emphasize the significance of both the sparse
cross-attention module and the index-based position embed-
ding in improving the model’s performance by facilitating

effective interactions and information integration across dif-
ferent observation planes.

5) Each Loss Coefficient of the Detection Head: Table IX
presents the results of ablation experiments on the weight-
ing coefficient of a single loss in TransMRE’s detection
performance. We observed that when the coefficient of the
classification loss is excessively large, it leads to convergence
issues in the network. However, within a reasonable range,
the detection performance is not significantly affected by the
coefficient.

V. CONCLUSION

In this study, we propose TransMRE, a novel 3-D object
detection network that is based on LiDAR technology. Unlike
traditional 3-D object detection networks that convert 3-D
scene features into BEV features, TransMRE takes into con-
sideration that the features from a single perspective are
often sparse and may not fully represent the entire 3-D
scene. To address this, TransMRE incorporates the MRE
module, which effectively factorizes the features along the
XY , X Z , and Y Z planes. This spatial representation greatly
enhances the capability of the network. The VRQ module
proposed by TransMRE reconstructs features from multiple
observation planes into voxels, further improving the net-
work’s performance.

To overcome the computational cost associated with
Transformer mechanisms in high-resolution feature maps,
we propose a dividing and sectionalization calculation strat-
egy. Sparse self-attention is performed within each block to
extract relevant features, while sparse cross-attention is applied
between blocks only when they are projected onto the same
voxel.

Future research will focus on further improving the net-
work’s feature extraction capabilities from sparse point clouds
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and exploring the integration of camera images to enhance the
representation of LiDAR point clouds across multiple observa-
tion planes. These advancements are expected to significantly
improve the accuracy and efficiency of 3-D object detection
based on LiDAR point clouds.
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